Université de Versailles-St Quentin, Laboratoire de Mathématiques, 45 avenue des États-Unis 78035 Versailles cedex, France
e-mail: lucia.di.vizio[at]math.cnrs.fr          
Office: bâtiment Fermat, office 3305

with Charlotte HardouinConfluentes Mathematici, Tome 12 (2020) no. 2, pp. 11-35. 

ABSTRACT:

We establish some comparison results among the different Galois theories, parameterized or not, for q-difference equations, completing the work of Chatzidakis-Hardouin-Singer. Our main result is the link between the abstract parameterized Galois theories, that give information on the differential properties of abstract solutions of q-difference equations, and the properties of meromorphic solutions of such equations. Notice that a linear q-difference equation with meromorphic coefficients always admits a basis of meromorphic solutions.

DOI : https://doi.org/10.5802/cml.66

ArXiv: 1205.1696

HAL: hal-00794745