with Changgui Zhang. Annales de l'Institut Fourier, 59 no.1 (2009), 347-392.
Abstract:
This paper is divided in two parts. In the first part we consider irregular singular analytic q-difference equations, with q\in ]0,1[, and we show how the Borel sum of a divergent solution of a differential equation can be uniformly approximated on a convenient sector by a meromorphic solution of such a q-difference equation. In the second part, we work under the assumption q\in ]1,+\infty[. In this case, at least four different q-Borel sums of a divergent solution of an irregular singular analytic q-difference equations are spread in the literature: under convenient assumptions we clarify the relations among them.
DOI: 10.5802/aif.2433
ArXiv:0709.1610
HAL:hal-00350701