ARITHMETIC THEORY OF q-DIFFERENCE EQUATIONS
 (G_{q}-FUNCTIONS AND q-DIFFERENCE MODULES OF TYPE G, GLOBAL q-GEVREY SERIES)

LUCIA DI VIZIO

Abstract

In the first part of the paper we give a definition of G_{q}-function and we establish a regularity result, obtained as a combination of a q-analogue of the André-Chudnovsky Theorem [And89] VI] and Katz Theorem [Kat70] §13]. In the second part of the paper, we combine it with some formal q-analogous Fourier transformations, obtaining a statement on the irrationality of special values of the formal q-Borel transformation of a G_{q}-function.

Contents

1. Introduction 1
Part 1. G_{q}-FUNCTIONS AND q-DIFFERENCE MODULES OF TYPE G 3
2. Definition and first properties 3
3. Role of the "noncyclotomic" places 5
4. Main results 6
5. Nilpotent reduction at cyclotomic places 7
6. Proof of Theorem 4.1 9
7. Proof of Theorem 4.2 10
Part 2. Global q-Gevrey Series 21
8. Definition and first properties 21
9. Formal Fourier transformations 23
10. Action of the formal Fourier transformations on the Newton Polygon 24
11. Solutions at points of K^{*} 26
12. Structure theorems 27
13. An irrationality result for global q-Gevrey series of negative orders 30
References 33

1. Introduction

A G-function, notion introduced by C.L. Siegel in 1929 , is a formal power series $y=\sum_{n \geq 0} y_{n} x^{n}$ with coefficients in the field of algebraic numbers $\overline{\mathbb{Q}}$, such that:
(1) the series y is solution of a linear differential equation with coefficients in $\overline{\mathbb{Q}}(x)$ (condition that actually ensures that the coefficients of y are contained in a number field K);
(2) there exist a sequence of positive numbers $N_{n} \in \mathbb{N}$ and a positive constant C such that $N_{n} y_{s}$ is an integer of K for any $0 \leq s \leq n$ and $N_{n} \leq C^{n}$;
(3) for any immersion $K \hookrightarrow \mathbb{C}$, the image of y in $\mathbb{C}[[x]]$ is a convergent power series for the usual norm.

[^0]Roughly speaking, a G-module is a, a posteriori fuchsien, $K(x) / K$-differential module whose (uniform part of) solutions are G-functions (cf. Bom81, CC85, And89, DGS94). More formally, if $Y^{\prime}(x)=$ $G(x) Y(x)$ is the differential system associate with such a connection in a given basis, one can iterate it obtaining a family of the higher order differential systems $\frac{1}{n!} \frac{d^{n} Y}{d x^{n}}(x)=G_{[n]}(x) Y(x)$. Our differential module is of type G if there exist a constant $C>0$ and a sequence of polynomials $P_{n}(x) \in \mathbb{Z}[x]$, such that
(1) $P_{n}(x) G_{[s]}(x)$ is a matrix whose entries are polynomials with coefficients in the ring of integers of K, for any $s=1, \ldots, n$;
(2) the absolute value of the coefficients of $P_{n}(x)$ is smaller that C^{n}.

The unsolved Bombieri-Dwork's conjecture says that G-modules come from geometry, in the sense that they are extensions of direct summands of Gauss-Manin connections: the precise conjecture is stated in [And89, II]. Y. André proves that a differential module coming from geometry is of type G ($c f$. And89, V, App.]). More recently, the theory of G-functions has been the starting point for the papers And00a and And00b, where the author develops an arithmetic theory of Gevrey series, allowing for a new approach to some diophantine results, such as the Schidlovskii's theorem.

The question of the existence of an arithmetic theory of q-difference equations was first asked in And00b. A naive analogue over a number field of the notion above clearly does not work. In fact, let K be a number field and let $q \in K, q \neq 0$, not be a root of unity. We consider formal power series $y \in K[[x]]$ that satisfies conditions 2 and 3 of the definition of G-function given above and that is solution of a nontrivial q-difference equation with coefficients in $K(x)$, i.e. :

$$
a_{\nu}(x) y\left(q^{\nu} x\right)+a_{\nu-1} y\left(q^{n u-1} x\right)+\cdots+a_{0}(x) y(x)=0
$$

with $a_{0}(x), \ldots, a_{\nu}(x) \in K(x)$, not all zero. Then the following result by Y. André is the key point of DV02:

Proposition 1.1 ([DV02, 8.4.1]). A series y as above is the Taylor expansion at 0 of a rational function in $K(x)$.

Other unsuccessful suggestions for a q-analogue of a G-function are made in [DV00, App.]. These considerations may induce to conclude that q-difference equations do not come from geometry over $\overline{\mathbb{Q}}$.

Here we propose another approach: we consider a finite extension K of the field of rational function $k(q)$ in q with coefficients in a field k. This is a very natural approach since in the literature, q very often considered as a parameter. Since K is a global field, we can define a G_{q}-function to be a series in $K[[x]]$, solution of a q-difference equation with coefficients in $K(x)$, satisfying a straightforward analogue of conditions 2 and 3 of the definition above. As far as the definition of q-difference modules of type G is concerned only the places of K modulo whom q is a root of unity - that we will briefly call cyclotomic places - comes into the picture ($c f$. Proposition 3.1 below). In fact, consider a q-difference system

$$
\begin{equation*}
Y(q x)=A(x) Y(x) \tag{1.1.1}
\end{equation*}
$$

with $A(x) \in G l_{\nu}(K(x))$: its solutions can be interpreted as the horizontal vectors of a $K(x)$-free module M of rank ν with respect to a semilinear bijective operator Σ_{q} verifying $\Sigma_{q}(f(x) m)=f(q x) \Sigma_{q}(m)$ for any $f(x) \in K(x)$ and any $m \in M$. We consider the q-derivation:

$$
d_{q}(f(x))=\frac{f(q x)-f(x)}{(q-1) x}
$$

and its iterations:

$$
\frac{d_{q}^{n}}{[n]_{q}^{!}}, \text {with }[0]_{q}^{!}=[1]_{q}^{!}=1 \text { and }[n]_{q}^{!}=\frac{q^{n}-1}{q-1}[n-1]_{q}^{!}
$$

We can obtain from (1.1.1) a whole family of systems:

$$
\frac{d_{q}^{n}}{[n]_{q}^{!}} Y(x)=G_{[n]}(x) Y(x)
$$

where $G_{1}(x)=\frac{A(x)-1}{(q-1) x}$ and $\frac{q^{n}-1}{q-1} G_{[n]}(x)=G_{[1]}(x) G_{[n-1]}(q x)+d_{q} G_{[n-1]}(x)$. The fact that the denominators $[n]_{q}^{!}$of the iterated derivations $\frac{d_{q}^{n}}{[n]_{q}^{l}}$ have positive valuation only at the cyclotomic places has the consequences that "there is no arithmetic growth" at the noncyclotomic places ($c f$. §3 below for a
precise formulation). Moreover, an important role in the proofs is played by the reduction of q-difference systems modulo a cyclotomic place: this means that we specializes q to a root of unity and we study the nilpotence properties of the obtained system. In characteristic zero, one automatically obtain an iterative q-difference module, in the sense of C. Hardouin Har07.

The role played by the cyclotomic valuations, and therefore by roots of unity, points out some analogies with other topics:

- The Volume Conjecture predicts a link between the hyperbolic volume of the complement of an hyperbolic knot and the asymptotic of the sequence $J_{n}(\exp (2 i \pi / n))$, where $J_{n}(q)$ is an invariant of the knot called n-th Jones polynomial. The Jones polynomials are Laurent polynomials in q such that the generating series $\sum_{n \geq 0} J_{n}(q) x^{n}$ is solution of a q-difference equations with coefficients in $\mathbb{Q}(q)(x)(c f$. [GL05]): the situation is quite similar to the one considered in the present paper. The q-difference equations appearing in this topological setting have, in general, irregular singularities, differently from the q-difference operators of type G, that are regular singular. To involve some irregular singular operators in the present framework, one should consider some formal q-Fourier transformations and develop a global theory of q-Gevrey series, in the wake of And00a: this is the topic of the second part of the paper.
- As already point out, an important role is played by the reduction of q-difference systems modulo the cyclotomic valuations. Conjecturally, the growth at cyclotomic places should be enough to describe the whole theory ($c f$. $\S 3$). It is natural to ask whether q-difference equations, that seem not to "come from geometry over $\overline{\mathbb{Q}}$ ", may have some geometric origin, in the sense of the geometry over $\mathbb{F}_{1}(c f$. [Sou04, [CC08]).
Notice that in Man08, Y. Manin establish a link between the Habiro ring, which is a topological algebra constructed to deal with quantum invariants of knots, and geometry over \mathbb{F}_{1}, so that the two remarks above are not orthogonal.

In the present paper we give a definition of G_{q}-functions and q-difference modules of type G. We test those definitions proving that a q-difference module having an injective solution whose entries are G-functions is of type G : that is to say that "the minimal q-difference module generated by a G-function" is of type G ($c f$. Theorem 4.2 below). We also prove that q-difference module of type G are regular singular ($c f$. Theorem 4.1). These two results are the base for the development of a global theory of q-Gevrey series.

In part two, we define global q-Gevrey series. Via the study of two q-analogues the formal Fourier transformation, we establish some structure theorems for the minimal q-difference equations killing global q-Gevrey series ($c f$. Theorems $12.3,12.4$ and 12.6). We conclude with an irrationality theorem for special values of of global q-Gevrey series of negative orders ($c f$. Theorem 13.6).

This paper won't be submitted for publication since the results below can be obtained in a more direct way. Namely, one can prove that G_{q}-functions are all rational (cf. DVH09). Nevertheless, the construction of the coefficients of the q-difference module from an injective solution in the proof of Theorem 4.2 has an interest in itself, since it may be applied to other difference operators.

Acknowledgements. I would like to thank Y. André, J-P. Bézivin and Y. Manin for the interest they have shown for my work. Of course, I'm the only responsible for the deficiencies of this paper.

Part 1. G_{q}-FUNCtions and q-Difference modules of type G

2. Definition and first properties

Let us consider the field of rational function $k(q)$ with coefficients in a fixed field k. We fix $d \in(0,1)$ and for any irreducible polynomial $v=v(q) \in k[q]$ we set:

$$
|f(q)|_{v}=d^{\operatorname{deg}_{q} v(q) \cdot \operatorname{ord}_{v(q)} f(q)}, \forall f(q) \in k[q] .
$$

The definition of $\left|\left.\right|_{v}\right.$ extends to $k(q)$ by multiplicativity. To this set of norms one has to add the q^{-1}-adic one, defined on $k[q]$ by:

$$
|f(q)|_{q^{-1}}=d^{-\operatorname{deg}_{q} f(q)}
$$

once again this definition extends by multiplicativity to $k(q)$. Then the Product Formula holds:

$$
\prod_{v}\left|\frac{f(q)}{g(q)}\right|_{v}=d^{\sum_{v} \operatorname{deg}_{q} v(q)\left(\operatorname{ord}_{v(q)} f(q)-\operatorname{ord}_{v(q)} g(q)\right)}=d^{\operatorname{deg}_{q} f(q)-\operatorname{deg}_{q} g(q)}=\left|\frac{f(q)}{g(q)}\right|_{q^{-1}}^{-1}
$$

For any finite extension K of $k(q)$, we consider the family \mathcal{P} of ultrametric norms, that extends the norms defined above, up to equivalence. We suppose that the norms in \mathcal{P} are normalized so that the Product Formula still holds. We consider the following partition of \mathcal{P} :

- the set \mathcal{P}_{∞} of places of K such that the associated norms extend, up to equivalence, either $\left|\left.\right|_{q}\right.$ or $\left|\left.\right|_{q^{-1}}\right.$;
- the set \mathcal{P}_{f} of places of K such that the associated norms extend, up to equivalence, one of the norms || $\left.\right|_{v}$ for an irreducible $v=v(q) \in k[q], v(q) \neq q$.
Moreover we consider the set \mathcal{C} of places $v \in \mathcal{P}_{f}$ such that v divides a valuation of $k(q)$ having as uniformizer a factor of a cyclotomic polynomial. We will briefly call $v \in \mathcal{C}$ a cyclotomic place.

Definition 2.1. A series $y=\sum_{n \geq 0} y_{n} x^{n} \in K[[x]]$ is a G_{q}-function if:
(1) It is solution of a q-difference equations with coefficients in $K(x)$, i.e. there exists $a_{0}(x), \ldots, a_{\nu}(x) \in$ $K(x)$ not all zero such that

$$
\begin{equation*}
a_{0}(x) y(x)+a_{1}(x) y(q x)+\cdots+a_{\nu}(x) y\left(q^{\nu} x\right)=0 \tag{2.1.1}
\end{equation*}
$$

(2) The series y has finite size, i.e.

$$
\sigma(y):=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{v \in \mathcal{P}} \log ^{+}\left(\sup _{s \leq n}\left|y_{s}\right|_{v}\right)<\infty
$$

where $\log ^{+} x=\sup (0, \log x)$.
We will refer to the invariant σ as the size, using the same terminology as in the classical case of series over a number field.

Remark 2.2. (1) One can show that this definition of G_{q}-function is equivalent to the one given in the introduction ($c f$. And89, I, 1.3]).
(2) Let $\overline{k(q)}$ be the algebraic closure of $k(q)$. A formal power series with coefficients in $\overline{k(q)}$ solution of a q-difference equations with coefficients in $\overline{k(q)}(x)$ is necessarily defined over a finite extension $K / k(q)$.
Proposition 2.3. The set of G_{q}-functions is stable with respect to the sum and the Cauchy produc \uparrow. Moreover, it is independent of the choice of K, in the sense that we can replace K by any finite extension of K.

Proof. The proof is the same as in the case of classical G-functions (cf. [And89, I, 1.4, Lemma 2]).
The field $K(x)$ is naturally a q-difference algebra, i.e. is equipped with the operator

$$
\begin{aligned}
\sigma_{q}: \quad K(x) & \longrightarrow K(x) \\
f(x) & \longmapsto f(q x)
\end{aligned}
$$

The field $K(x)$ is also equipped with the q-derivation

$$
d_{q}(f)(x)=\frac{f(q x)-f(x)}{(q-1) x}
$$

satisfying a q-Leibniz formula:

$$
d_{q}(f g)(x)=f(q x) d_{q}(g)(x)+d_{q}(f)(x) g(x)
$$

for any $f, g \in K(x)$. A q-difference module over $K(x)$ (of rank ν) is a finite dimensional $K(x)$-vector space M (of dimension ν) equipped with an invertible σ_{q}-semilinear operator, i.e.

$$
\Sigma_{q}(f(x) m)=f(q x) \Sigma_{q}(m)
$$

[^1]for any $f \in K(x)$ and $m \in M$. A morphism of q-difference modules over $K(x)$ is a morphisms of $K(x)$ vector spaces, commuting to the q-difference structure (for more generalities on the topic, $c f$. vdPS97, [DV02, Part I] or [DVRSZ03]).

Let $\mathcal{M}=\left(M, \Sigma_{q}\right)$ be a q-difference module over $K(x)$ of rank ν. We fix a basis \underline{e} of M over $K(x)$ and we set:

$$
\Sigma_{q} \underline{e}=\underline{e} A(x),
$$

with $A(x) \in G l_{\nu}(K(x))$. An horizontal vector $\vec{y} \in K(x)^{\nu}$ with respect to Σ_{q} is a vector that verifies $\vec{y}(x)=A(x) \vec{y}(q x)$. Therefore we call

$$
Y(q x)=A_{1}(x) Y(x), \text { with } A_{1}(x)=A(x)^{-1}
$$

the system associated to \mathcal{M} with respect to the basis \underline{e}. Recursively we obtain the families of q-difference systems:

$$
Y\left(q^{n} x\right)=A_{n}(x) Y(x) \text { and } d_{q}^{n} Y(x)=G_{n}(x) Y(x),
$$

with $A_{n}(x) \in G l_{\nu}(K(x))$ and $G_{n}(x) \in M_{\nu}(K(x))$. Notice that:

$$
A_{n+1}(x)=A_{n}(q x) A_{1}(x), G_{1}(x)=\frac{A_{1}(x)-1}{(q-1) x} \text { and } G_{n+1}(x)=G_{n}(q x) G_{1}(x)+d_{q} G_{n}(x)
$$

It is convenient to set $A_{0}=G_{0}=1$. Moreover we set $[n]_{q}=\frac{q^{n}-1}{q-1}$ for any $n \geq 1,[n]_{q}^{!}=[n]_{q}[n-1]_{q} \cdots[1]_{q}$, $[0]_{q}^{!}=1$ and $G_{[n]}(x)=\frac{G_{n}(x)}{[n]_{q}^{!}}$.
Definition 2.4. A q-difference module over $K(x)$ is said to be of type G (or a G - q-difference module) if the following global q-Galočkin condition is verified:

$$
\sigma_{\mathcal{C}}^{q}(\mathcal{M})=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{v \in \mathcal{C}} \log ^{+}\left(\sup _{s \leq n}\left|G_{[s]}\right|_{v, \text { Gauss }}\right)<\infty
$$

where

$$
\left|\frac{\sum a_{i} x^{i}}{\sum b_{j} x^{j}}\right|_{v, \text { Gauss }}=\frac{\sup \left|a_{i}\right|_{v}}{\sup \left|b_{j}\right|_{v}}
$$

for all $\frac{\sum a_{i} x^{i}}{\sum b_{j} x^{j}} \in K(x)$.
Remark 2.5. Notice that the definition of G - q-difference module involves only the cyclotomic places.
Proposition 2.6. The definition of G_{q}-module is independent on the choice of the basis and is stable by extension of scalars to $K^{\prime}(x)$, for a finite extension K^{\prime} of K.
Proof. Once again the proof if similar to the classical theory of G-functions and differential modules of type G.

3. Role of the "noncyclotomic" Places

Proposition 3.1. In the notation introduced above, for any q-difference module $\mathcal{M}=\left(M, \Sigma_{q}\right)$ over $K(x)$ we have:

$$
\sigma_{\mathcal{P}_{f} \backslash \mathcal{C}}^{(q)}(\mathcal{M}):=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{v \in \mathcal{P}_{f} \backslash \mathcal{C}} \log ^{+}\left(\sup _{s \leq n}\left|G_{[s]}\right|_{v}\right)<\infty
$$

Proof. We recall that the sequence of matrices $G_{[n]}$ satisfies the recurrence relation:

$$
G_{[n+1]}(x)=\frac{G_{[n]}(q x) G_{1}(x)+d_{q} G_{[n]}(x)}{[n+1]_{q}}
$$

Since $\left|[n+1]_{q}\right|_{v}=1$ for any $v \in \mathcal{P}_{f} \backslash \mathcal{C}$, we conclude recursively that

$$
\left|G_{[n]}\right|_{v, \text { Gauss }} \leq 1
$$

for almost all places $v \in \mathcal{P}_{f} \backslash \mathcal{C}$. For the remaining finitely many places $v \in \mathcal{P}_{f}$, one can deduce from the recursive relation there exists a constant $C>0$ such that $\left|G_{[n]}\right|_{v, \text { Gauss }} \leq C^{n}$.

We immediately obtain the equivalence of our definition of q-difference module of type G with the naive analogue of the classical definition of G-module ($c f$. And89, IV, 4.1]):

Corollary 3.2. A q-difference module is of type G if and only if

$$
\sigma_{\mathcal{P}_{f}}^{(q)}(\mathcal{M}):=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{v \in \mathcal{P}_{f}} \log ^{+}\left(\sup _{s \leq n}\left|G_{[s]}\right|_{v}\right)<\infty
$$

We expect the same kind of result to be true for G_{q}-functions, namely:
Conjecture 3.3. Suppose that $y=\sum_{n \geq 0} y_{n} x^{n} \in K[[x]]$ is solution of a q-difference equations with coefficients in K (cf. 2.1.1). Then:

$$
\sigma_{\mathcal{P}_{f} \backslash \mathcal{C}}(y)=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{v \in \mathcal{P}_{f} \backslash \mathcal{C}} \log ^{+}\left(\sup _{s \leq n}\left|y_{s}\right|_{v}\right)<\infty
$$

The last statement would immediately imply that one can define G_{q}-functions in the following way:
Conjectural definition 3.4. We say that the series $y=\sum_{n \geq 0} y_{n} x^{n} \in K[[x]]$ is a G_{q}-function if y is solution of a q-difference equations with coefficients in K and moreover

$$
\sigma_{\mathcal{C} \cup \mathcal{P}_{\infty}}(y)=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{v \in \mathcal{C} \cup \mathcal{P}_{\infty}} \log ^{+}\left(\sup _{s \leq n}\left|y_{s}\right|_{v}\right)<\infty .
$$

Remark 3.5. The fact that for almost all $v \in \mathcal{P}_{f} \backslash \mathcal{C}$ we have $\left|G_{[n]}(x)\right|_{v, \text { Gauss }} \leq 1$ for any $n \geq 1$ implies that for almost all $v \in \mathcal{P}_{f} \backslash \mathcal{C}$ a "solution" $y(x)=\sup _{n} y_{n} x^{n} \in K[[x]]$ of a q-difference system with coefficient in $K(x)$ is bounded, in the sense that $\sup _{n}\left|y_{n}\right|_{v}<\infty$. Unfortunately, one would need some uniformity with respect to v and n to conclude something about $\sigma_{\mathcal{P}_{f} \backslash \mathcal{C}}(y)$.

Notice that if 0 is an ordinary point, the conjecture is trivial since

$$
\sum_{n \geq 0} G_{[n]}(0) x^{n}
$$

is a fundamental solution of the linear system $Y(q x)=A_{1}(x) Y(x)$. A q-analogue of the techniques developed in [And89, V] (cf. also [DGS94, Chap. VII]) would probably allow to establish the conjecture under the assumption that 0 is a regular point. This is not satisfactory because one of the purposes of the whole theory is the possibility of reading the regularity of a q-difference equation on one single solution ($c f$. Theorem 4.1 below), so one does not want to assume regularity a priori.

4. Main results

A q-difference module $\left(M, \Sigma_{q}\right)$ is said to be regular singular at 0 if there exists a basis \underline{e} such that the Taylor expansion of the matrix $A_{1}(x)$ is in $G l_{\nu}(K[[x]])$. It is said to be regular singular tout court if it is regular singular both at 0 and at ∞. We have the following analogue of a well-known differential result ($c f$. [Kat70, §13]; $c f$. also [DV02, §6.2.2] for q-difference modules over a number field):
Theorem 4.1. A G-q-difference module \mathcal{M} over $K(x)$ is regular singular.
Let $\vec{y}(x)={ }^{t}\left(y_{0}(x), \ldots, y_{\nu-1}(x)\right) \in K[[x]]^{\nu}$ be a solution of the q-difference system associated to $\mathcal{M}=\left(M, \Sigma_{q}\right)$ with respect to the basis \underline{e} :

$$
\vec{y}(q x)=A_{1}(x) \vec{y}(x) .
$$

We say that $\vec{y}(x)$ is an injective solution if $y_{1}(x), \ldots, y_{\nu}(x)$ are lineairly independent over $K(x)$.
We have the following q-analogue of the André-Chudnovsky Theorem [And89, VI]:
Theorem 4.2. Let $\vec{y}(x)={ }^{t}\left(y_{0}(x), \ldots, y_{\nu-1}(x)\right) \in K[[x]]^{\nu}$ be an injective solution of the q-difference system associated to $\mathcal{M}=\left(M, \Sigma_{q}\right)$ with respect to the basis \underline{e}.

If $y_{0}(x), \ldots, y_{\nu-1}(x)$ are G_{q}-functions, then \mathcal{M} is a G-q-difference module.
We can immediately state a corollary:
Corollary 4.3. Let $\vec{y}(x)=^{t}\left(y_{0}(x), \ldots, y_{\nu-1}(x)\right) \in K[[x]]^{\nu}$ be an injective solution of the q-difference system associated to $\mathcal{M}=\left(M, \Sigma_{q}\right)$ with respect to the basis \underline{e}.

If $y_{1}(x), \ldots, y_{\nu}(x)$ are G_{q}-functions, then \mathcal{M} is regular singular.
Thanks to the cyclic vector lemma we can state the following (cf. [Sau00, Annexe B]):

Corollary 4.4. Let $y(x)$ a G_{q}-function and let

$$
\begin{equation*}
a_{0}(x) y(x)+a_{1}(x) y(q x)+\cdots+a_{\nu}(x) y\left(q^{\nu} x\right)=0 . \tag{4.4.1}
\end{equation*}
$$

a q-difference equation of minimal order ν, having $y(x)$ as a solution.
Then 4.4.1 is fuchsian, i.e. we have $\operatorname{ord}_{x} a_{i} \geq \operatorname{ord}_{x} a_{0}=\operatorname{ord}_{x} a_{\nu}$ and $\operatorname{deg}_{x} a_{i} \leq \operatorname{deg}_{x} a_{0}=\operatorname{deg}_{x} a_{\nu}$, for any $i=0, \ldots, \nu$.

The proofs of Theorem 4.1 and Theorem 4.2 are the object of $\S 6$ and $\S 7$ respectively.

5. Nilpotent reduction at cyclotomic places

We denote by \mathcal{O}_{K} the ring of integers of K, k_{v} the residue field of K with respect to the pace v, ϖ_{v} the uniformizer of v and q_{v} the image of q in k_{v}, which is defined for all places $v \in \mathcal{P}$. Notice that q_{v} is a root of unity for all $v \in \mathcal{C}$. Let $\kappa_{v} \in \mathbb{N}$ be the order of q_{v}, for $v \in \mathcal{C}$.

Let $\mathcal{M}=\left(M, \Sigma_{q}\right)$ be a q-difference module over $K(x)$. We can always choose a lattice \widetilde{M} of M over an algebra of the form

$$
\begin{equation*}
\mathcal{A}=\mathcal{O}_{K}\left[x, \frac{1}{P(x)}, \frac{1}{P(q x)}, \frac{1}{P\left(q^{2} x\right)}, \ldots\right] \tag{5.0.2}
\end{equation*}
$$

for some $P(x) \in \mathcal{O}_{K}[x]$, such that for almost all $v \in \mathcal{C}$ we can consider the q_{v}-difference module $M_{v}=$ $\widetilde{M} \otimes_{\mathcal{A}} k_{v}(x)$, with the structure induced by Σ_{q}. In this way, for almost all $v \in \mathcal{C}$, we obtain a q_{v}-difference module $\mathcal{M}_{v}=\left(M_{v}, \Sigma_{q_{v}}\right)$ over $k_{v}(x)$, having the particularity that q_{v} is a root of unity. This means that $\sigma_{q_{v}}^{\kappa_{v}}=1$ and that $\Sigma_{q_{v}}^{\kappa_{v}}$ is a $k_{v}(x)$-linear operator.

The results in [DV02, §2] apply to this situation: we recall some of them. Since we have:

$$
\sigma_{q_{v}}^{\kappa_{v}}=1+(q-1)^{\kappa_{v}} x^{\kappa_{v}} d_{q_{v}}^{\kappa_{v}}
$$

and

$$
\Sigma_{q_{v}}^{\kappa_{v}}=1+(q-1)^{\kappa_{v}} x^{\kappa_{v}} \Delta_{q_{v}}^{\kappa_{v}}
$$

where $\Delta_{q_{v}}=\frac{\Sigma_{q_{v}}-1}{\left(q_{v}-1\right) x}$, the following facts are equivalent:
(1) $\sum_{q_{v}}^{\kappa_{v}}$ is unipotent;
(2) $\Delta_{q_{v}}^{\kappa_{v}}$ is a linear nilpotent operator;
(3) the reduction of $A_{\kappa_{v}}(x)-1$ modulo ϖ_{v} is a nilpotent matrix;
(4) the reduction of $G_{\kappa_{v}}(x)$ modulo ϖ_{v} is nilpotent;
(5) there exists $n \in \mathbb{N}$ such that $\left|G_{n \kappa_{v}}(x)\right|_{v, \text { Gauss }} \leq\left|\varpi_{v}\right|_{v}$.

Definition 5.1. If the conditions above are satisfied we say that \mathcal{M} has nilpotent reduction (of order n) modulo $v \in \mathcal{C}$.

Remark 5.2. If the characteristic of k is 0 and if $\left|G_{\kappa_{v}}(x)\right|_{v, \text { Gauss }} \leq\left|\left[\kappa_{v}\right]_{q}\right|_{v}$, the module \mathcal{M}_{v} has a structure of iterated q-difference module, in the sense of [Har07, §3]. In particular, if v is a non ramified place of $K / k(q)$, then $\left|\left[\kappa_{v}\right]_{q}\right|_{v}=\left|\varpi_{v}\right|_{v}$.

The following result is a q-analogue of a well-known differential p-adic estimate ($c f$. for instance [DGS94, page 96]). It has already been proved in the case of q-difference equations over a p-adic field in [DV02, §5.1]. We are only sketching the argument: only the estimate of the q-factorials are slightly different from the case of mixed characteristic.

Proposition 5.3. If $\mathcal{M}=\left(M, \Sigma_{q}\right)$ has nilpotent reduction(of order n) modulo $v \in \mathcal{C}$ then

$$
\limsup _{m \rightarrow \infty}\left(1,\left|G_{[m]}\right|_{v, \text { Gauss }}\right)^{1 / m} \leq\left|\varpi_{v}\right|_{v}^{1 / n \kappa_{n}}\left|\left[\kappa_{v}\right]_{q}\right|_{v}^{-1 / \kappa_{v}}
$$

Proof. The Leibniz formula (cf. DV02, Lemma 5.1.2] for a detailed proof in a quite similar situation) implies that for any $s \in \mathbb{N}$ we have:

$$
\left|G_{s n \kappa_{v}}(x)\right|_{v, \text { Gauss }} \leq\left|\varpi_{v}\right|_{v}^{s}
$$

Since $\left|G_{1}(x)\right|_{v, \text { Gauss }} \leq 1$, for any $m \in \mathbb{N}$ we have:

$$
\left|G_{[m]}(x)\right|_{v, \text { Gauss }} \leq \frac{\left|G_{\left[\frac{m}{n \kappa_{v}}\right] n \kappa_{v}}(x)\right|_{v, \text { Gauss }}}{\left|[m]_{q}^{!}\right|_{v}} \leq \frac{\left|\varpi_{v}\right|_{v}^{\left[\frac{m}{n n_{v}}\right]}}{\left|[m]_{q}^{!}\right|_{v}}
$$

where $\left[\frac{m}{n \kappa_{v}}\right]=\max \left\{a \in \mathbb{Z}: a \leq \frac{m}{n \kappa_{v}}\right\}$. The following lemma on the estimate of $[m]_{q}^{!}$allows to conclude.

Lemma 5.4. For $v \in \mathcal{C}$ we have $\left|[m]_{q}\right|_{v}=\left|[\kappa]_{q}\right|_{v}$ if $\kappa_{v} \mid m$ and $\left|[m]_{q}\right|_{v}=1$ otherwise. Therefore:

$$
\lim _{m \rightarrow \infty}\left|[m]_{q}^{!}\right|_{v}^{1 / m}=\left|\left[\kappa_{v}\right]_{q}\right|_{v}^{1 / \kappa_{v}}
$$

Proof. Let $m \geq 2$ and $m=s \kappa_{v}+r$, with $r, s \in \mathbb{Z}$ and $0 \leq r<\kappa_{v}$. If κ_{v} does not divide m, i.e. if $r>0$, we have

$$
[m]_{q}=1+q+\cdots+q^{m-1}=\left[\kappa_{v}\right]_{q}+q^{\kappa_{v}}\left[\kappa_{v}\right]_{q}+\cdots+q^{s \kappa_{v}}\left(1+q+\cdots+q^{r-1}\right)
$$

Therefore $\left|[m]_{q}\right|_{v}=1$. On the other hand, if $r=0$:

$$
[m]_{q}=\left(1+q^{\kappa_{v}}+\cdots+q^{\kappa_{v}(s-1)}\right)\left[\kappa_{v}\right]_{q}
$$

Since $q^{\kappa_{v}} \equiv 1$ modulo ϖ_{v}, we deduce that $1+q^{\kappa_{v}}+\cdots+q^{\kappa_{v}(s-1)} \equiv s$ modulo ϖ_{v}. Therefore

$$
\left|[m]_{q}\right|_{v}=|s|_{v}\left|\left[\kappa_{v}\right]_{q}\right|_{v}=\left|\left[\kappa_{v}\right]_{q}\right|_{v}
$$

This implies that

$$
\left.\left|[m]_{q}^{!}\right|_{v}=\mid \kappa_{v}\right]\left._{q}\right|_{v} ^{\left[\frac{m}{k_{v}}\right]}
$$

which allows to calculate the limit.
We obtain the following characterization:
Corollary 5.5. The q-difference module $\mathcal{M}=\left(M, \Sigma_{q}\right)$ has nilpotent reduction modulo $v \in \mathcal{C}$ if and only if

$$
\begin{equation*}
\operatorname{limsupsup}_{m \rightarrow \infty}\left(1,\left|G_{[m]}\right|_{v, \text { Gauss }}\right)^{1 / m}<\left|\left[\kappa_{v}\right]_{q}\right|_{v}^{-1 / \kappa_{v}} \tag{5.5.1}
\end{equation*}
$$

Proof. One side of the implication is an immediate consequence of the proposition above. On the other hand, the assumption (5.5.1) implies that

$$
\limsup _{m \rightarrow \infty}\left(1,\left|G_{m}\right|_{v, \text { Gauss }}\right)^{1 / m}<1
$$

which clearly implies that there exists n such that $\left|G_{n \kappa_{v}}\right|_{v, \text { Gauss }} \leq\left|\varpi_{v}\right|_{v}$.
We finally obtain the following proposition, that will be useful in the proof of Theorem 4.1.
Proposition 5.6. Let \mathcal{M} be q-difference module over $K(x)$ of type G. Let \mathcal{C}_{0} be the set of $v \in \mathcal{C}$ such that \mathcal{M} does not have nilpotent reduction modulo v. Then

$$
\sum_{v \in \mathcal{C}_{0}} \frac{1}{\kappa_{v}}<+\infty
$$

In particular, \mathcal{M} has nilpotent reduction modulo v for infinitely many $v \in \mathcal{C}$.
The proof relies on the following lemma:
Lemma 5.7. The following limit exists:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log ^{+}\left(\sup _{s \leq n}\left|G_{[s]}(x)\right|_{v, \text { Gauss }}\right)
$$

Proof. The proof is essentially the same as the proof of [DV02, 4.2.7], a part from the estimate of the q-factorials ($c f$. Lemma 5.4 above). The key point is the following formula:

$$
G_{[n+s]}(x)=\sum_{i+j=n} \frac{[n]_{q}^{!}[s]_{q}^{!}}{[s+n]^{!}} \frac{d_{q}^{j}}{[j]_{q}^{!}}\left(G_{[s]}\left(q^{i} x\right)\right) G_{[i]}(x), \forall s, n \in \mathbb{N},
$$

obtained iterating the Leibniz rule.
Proof of Proposition 5.6. The Fatou lemma, together with Lemma 5.7. implies:

$$
\sum_{v \in \mathcal{C}} \lim _{n \rightarrow \infty} \frac{1}{n} \log ^{+}\left(\sup _{s \leq n}\left|G_{[s]}(x)\right|_{v, \text { Gauss }}\right) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{v \in \mathcal{C}} \log ^{+}\left(\sup _{s \leq n}\left|G_{[s]}(x)\right|_{v, \text { Gauss }}\right) \leq \sigma_{\mathcal{C}}^{(q)}(\mathcal{M})<\infty
$$

It follows from Corollary 5.5 that:

$$
\sum_{v \in \mathcal{C}_{0}} \frac{\log ^{+}\left|\left[\kappa_{v}\right]_{q}\right|_{v}^{-1}}{\kappa_{v}}<\infty
$$

and hence that

$$
\sum_{v \in \mathcal{C}_{0}} \frac{\log d^{-1}}{\kappa_{v}}<\infty
$$

since only a finite number of places of $K / k(q)$ are ramified.

6. Proof of Theorem 4.1

It is enough to prove that 0 is a regular singular point for \mathcal{M}, the proof at ∞ being completely analogous.

Let $r \in \mathbb{N}$ be a divisor of ν ! and let L be a finite extension of K containing an element \widetilde{q} such that $\tilde{q}^{r}=q$. We consider the field extension $K(x) \hookrightarrow L(t), x \mapsto t^{r}$. The field $L(t)$ has a natural structure of \widetilde{q}-difference algebra extending the q-difference structure of $K(x)$. Remark that:

Lemma 6.1. The q-difference module \mathcal{M} is regular singular at $x=0$ if and only if the \widetilde{q}-difference module $\mathcal{M}_{L(t)}:=\left(M \otimes_{K(t)} L(t), \Sigma_{\tilde{q}}:=\Sigma_{q} \otimes \sigma_{\widetilde{q}}\right)$ is regular singular at $t=0$.

Proof. It is enough to notice that if \underline{e} is a cyclic basis for \mathcal{M}, then $\underline{e} \otimes 1$ is a cyclic basis for $\mathcal{M}_{L(t)}$ and $\Sigma_{\widetilde{q}}(\underline{e} \otimes 1)=\Sigma_{q}(\underline{e}) \otimes 1$.

The next lemma can be deduced from the formal classification of q-difference modules ($c f$. Pra83, Cor. 9 and §9, 3)], [Sau04, Thm. 3.1.7]):

Lemma 6.2. There exist an extension $L(t) / K(x)$ as above, a basis \underline{f} of the \widetilde{q}-difference module $\mathcal{M}_{L(t)}$, such that $\Sigma_{\widetilde{q}} \underline{f}=\underline{f} B(t)$, with $B(t) \in G l_{\mu}(L(t))$, and an integer ℓ such that

$$
\left\{\begin{array}{l}
B(t)=\frac{B_{\ell}}{t^{\ell}}+\frac{B_{\ell-1}}{t^{\ell-1}}+\ldots, \text { as an element of } G l_{\mu}(L((t))) \tag{6.2.1}\\
B_{\ell} \text { is a constant non nilpotent matrix. }
\end{array}\right.
$$

Proof of Theorem 4.1. Let $\mathcal{B} \subset L(t)$ be a \widetilde{q}-difference algebra over the ring of integers \mathcal{O}_{L} of L, of the same form as 5.0.2, containing the entries of $B(t)$. Then there exists a \mathcal{B}-lattice \mathcal{N} of $\mathcal{M}_{L(t)}$ inheriting the \widetilde{q}-difference module structure from $\mathcal{M}_{L(t)}$ and having the following properties:

1. \mathcal{N} has nilpotent reduction modulo infinitely many cyclotomic places of L;
2. there exists a basis \underline{f} of \mathcal{N} over \mathcal{B} such that $\Sigma_{\tilde{q}} \underline{f}=\underline{f} B(t)$ and $B(t)$ verifies (6.2.1).

Iterating the operator $\Sigma_{\widetilde{q}}$ we obtain:

$$
\Sigma_{\widetilde{q}}^{m}(\underline{f})=\underline{f} B(t) B(\widetilde{q} t) \cdots B\left(\widetilde{q}^{m-1} t\right)=\underline{f}\left(\frac{B_{\ell}^{m}}{\widetilde{q}^{\frac{\ell(\ell m-1)}{2}} x^{m \ell}}+\text { h.o.t. }\right)
$$

We know that for infinitely many cyclotomic places w of L, the matrix $B(t)$ verifies

$$
\begin{equation*}
\left(B(t) B(\widetilde{q} t) \cdots B\left(\widetilde{q}^{\kappa_{w}-1} t\right)-1\right)^{n(w)} \equiv 0 \bmod \varpi_{w} \tag{6.2.2}
\end{equation*}
$$

where ϖ_{w} is an uniformizer of the place w, κ_{w} is the order \widetilde{q} modulo ϖ_{w} and $n(w)$ is a convenient positive integer. Suppose that $\ell \neq 0$. Then $B_{\ell}^{\kappa_{w}} \equiv 0$ modulo ϖ_{w}, for infinitely many w, and hence B_{ℓ} is a nilpotent matrix, in contradiction with lemma 6.2. So necessarily $\ell=0$.

Finally we have $\Sigma_{\widetilde{q}}(\underline{f})=\underline{f}\left(B_{0}+\right.$ h.o.t $)$. It follows from 6.2.1) that B_{0} is actually invertible, which implies that $\mathcal{M}_{L(t)}$ is regular singular at 0 . Lemma 6.1 allows to conclude.

7. Proof of Theorem 4.2

7.1. Idea of the proof. The hypothesis states that there exists a vector $\vec{y}={ }^{t}\left(y_{0}, \ldots, y_{\nu-1}\right) \in K[[x]]^{\nu}$, which is solution of the q-difference system:

$$
\begin{equation*}
\vec{y}(q x)=A_{1}(x) \vec{y}(x), \tag{7.0.3}
\end{equation*}
$$

and therefore of the systems $d_{q}^{n} \vec{y}=G_{n}(x) \vec{y}$ and $\sigma_{q}^{n} \vec{y}=A_{n}(x) \vec{y}$ for any $n \geq 1$, having the property that $y_{0}, \ldots, y_{\nu-1}$ are linearly independent over $K(x)$. We recall that

$$
G_{n+1}(x)=G_{n}(q x) G_{1}(x)+d_{q} G_{n}(x)
$$

and that

$$
A_{n+1}(x)=A_{n}(q x) A_{1}(x)
$$

Let us consider the operator:

$$
\Lambda=A_{1}(x)^{-1} \circ\left(d_{q}-G_{1}(x)\right)
$$

We know that there exists an extension \mathcal{U} of $K(x)$ (for instance the universal Picard-Vessiot ring constructed in vdPS97, §12.1]) such that we can find an invertible matrix \mathcal{Y} with coefficient in \mathcal{U} solution of our system $d_{q} \mathcal{Y}=G_{1} \mathcal{Y}$. An explicit calculation shows that:

$$
d_{q} \circ \mathcal{Y}^{-1}=\left(\sigma_{q} \mathcal{Y}\right)^{-1}\left(d_{q}-G_{1}(x)\right)=\mathcal{Y}^{-1} A_{1}(x)^{-1}\left(d_{q}-G_{1}(x)\right)
$$

and therefore that:

$$
\begin{equation*}
\Lambda^{n}=\mathcal{Y} \circ d_{q}^{n} \circ \mathcal{Y}^{-1}, \text { for all integers } n \geq 0 \tag{7.0.4}
\end{equation*}
$$

We set $\binom{n}{i}_{q}=\frac{[n]_{q}^{!}}{[i]_{q}^{[n-1]_{q}^{!}}}$, for any pair of integers $n \geq i \geq 0$. The twisted q-binomial formula shows that $\left|\binom{n}{i}_{q}\right|_{v} \leq 1$ for any $v \in \mathcal{P}_{f}$.

The proof of Theorem 4.2 is based on the following q-analogue of And89, VI, §1]:
Proposition 7.1. There exist $\alpha_{0}^{(n)}, \ldots, \alpha_{n}^{(n)} \in K$ such that for all $\vec{P} \in K[x]^{\nu}$ and all $n \geq 0$ we have:

$$
\begin{equation*}
G_{[n]} \vec{P}=\sum_{i=0}^{n} \frac{(-1)^{i}}{[n]_{q}^{!}}\binom{n}{i}_{q} \alpha_{i}^{(n)} d_{q}^{n-i} \circ A_{i}(x) \Lambda^{i}(\vec{P}), \tag{7.1.1}
\end{equation*}
$$

with $\left|\alpha_{i}(n)\right|_{v} \leq 1$, for any $v \in \mathcal{P}_{f}$ and $n \geq i \geq 0$.
Proof. The iterated twisted Leibniz Formula (cf. for instance [DV02, 1.1.8.1])

$$
d_{q}^{n}(f g)=\sum_{j=0}^{n}\binom{n}{j}_{q} \sigma_{q}^{j}\left(d_{q}^{n-j}(f)\right) d_{q}^{j}(g), \forall f, g \in \mathcal{U}
$$

implies

$$
\begin{aligned}
\sum_{i=0}^{n} & \frac{(-1)^{i}}{[n]_{q}^{!}}\binom{n}{i}_{q} \alpha_{i}^{(n)} d_{q}^{n-i} \circ A_{i}(x) \circ \Lambda^{i}(\vec{P}) \\
& =\sum_{i=0}^{n} \frac{(-1)^{i}}{[n]_{q}^{!}}\binom{n}{i}_{q} \alpha_{i}^{(n)} d_{q}^{n-i} \circ \sigma_{q}^{i}(\mathcal{Y}) \circ d_{q}^{i} \circ \mathcal{Y}^{-1}(\vec{P}) \\
& =\sum_{i=0}^{n} \frac{(-1)^{i}}{[n]_{q}^{!}}\binom{n}{i}_{q} \alpha_{i}^{(n)} \sum_{j=0}^{n-i}\binom{n-i}{j}_{q} q^{i j} \sigma_{q}^{n-j}\left(d_{q}^{j}(\mathcal{Y})\right) \circ d_{q}^{n-j} \circ \mathcal{Y}^{-1}(\vec{P}) \\
& =\sum_{j=0}^{n}\left(\sum_{i=0}^{n-j} \frac{(-1)^{i}}{[n]_{q}^{!}}\binom{n}{i}_{q}\binom{n-i}{j}_{q} q^{i j} \alpha_{i}^{(n)}\right) \sigma_{q}^{n-j}\left(d_{q}^{j}(\mathcal{Y})\right) \circ d_{q}^{n-j} \circ \mathcal{Y}^{-1}(\vec{P}) \\
& =\sum_{j=0}^{n} \frac{1}{\left.[n-j]_{q}^{!}[j]\right]_{q}}\left(\sum_{i=0}^{n-j}(-1)^{i}\binom{n-j}{i}_{q} q^{i j} \alpha_{i}^{(n)}\right) \sigma_{q}^{n-j}\left(d_{q}^{j}(\mathcal{Y})\right) \circ d_{q}^{n-j} \circ \mathcal{Y}^{-1}(\vec{P})
\end{aligned}
$$

We have to solve the linear system:

$$
\sum_{i=0}^{n-j}(-1)^{i}\binom{n-j}{i}_{q} q^{i j} \alpha_{i}^{(n)}= \begin{cases}1 & \text { if } n=j \\ 0 & \text { otherwise }\end{cases}
$$

For $n=j$ we obtain $\alpha_{0}^{(n)}=1$. We suppose that we have already determined $\alpha_{0}^{(n)}, \ldots, \alpha_{k-1}^{(n)}$. For $n-j=k$ we get:

$$
\sum_{i=0}^{k-1}(-1)^{i}\binom{k}{i}_{q} q^{i(n-k)} \alpha_{i}^{(n)}=(-1)^{k+1} \alpha_{k}^{(n)} q^{k(n-k)}
$$

This proves also that $\left|\alpha_{k}^{(n)}\right|_{v} \leq 1$ for ant $v \in \mathcal{P}_{f}$.
For all $\vec{P}={ }^{t}\left(P_{0}, \ldots, P_{\nu}-1\right) \in K[x]^{\nu}$ and $n \geq 0$ we set:

$$
\vec{R}_{n}=\frac{\Lambda^{n}}{[n]_{q}^{!}}(\vec{P})
$$

and:

$$
R^{<n>}=\left(\begin{array}{c}
\binom{n}{n}_{q} \vec{R}_{n} \\
\binom{n+1}{n}_{q} \vec{R}_{n+1} \ldots
\end{array}\binom{n+\nu-1}{n}_{q} \vec{R}_{n+\nu-1}\right) .
$$

Therefore we obtain the identity:

Corollary 7.2.

$$
G_{[n]} R^{<0>}=\sum_{i=0}^{n}(-1)^{i} \alpha_{i}^{(n)} \frac{d_{q}^{n-i}}{[n-i]_{q}^{!}} \circ A_{i}(x) R^{<i>}
$$

Remark 7.3. In order to obtain an estimate of $\sigma_{\mathcal{P}_{f}}^{(q)}(\mathcal{M})$ we want to estimate the matrices $G_{[n]}(x)$. The main point of the proof is the construction of a vector \vec{P}, linked to the solution vector \vec{y} of (7.0.3), such that $R^{<0>}$ is an invertible matrix.

The proof is divided in step: in step 1 we construct \vec{P}; in step 2 we prove that $R^{<0>}$ is invertible; step 3 and 4 are devoted to the estimate of $G_{[n]}(x)$ and of $\sigma_{\mathcal{P}_{f}}^{(q)}(\mathcal{M})$.
7.2. Step 1. Hermite-Padé approximations of \vec{y}. We denote by deg the usual degree in x and by ord the order at $x=0$. We extend their definitions to vectors as follows:

$$
\begin{aligned}
& \operatorname{deg} \vec{P}(x)=\sup _{i=0, \ldots, \nu-1} \operatorname{deg} P_{i}(x), \text { for all } \vec{P}={ }^{t}\left(P_{0}(x), \ldots, P_{\nu-1}(x)\right) \in K[x]^{\nu} \\
& \operatorname{ord} \vec{P}(x)=\inf _{i=0, \ldots, \nu-1} \operatorname{ord} P_{i}(x), \text { for all } \vec{P}={ }^{t}\left(P_{0}(x), \ldots, P_{\nu-1}(x)\right) \in K((x))^{\nu}
\end{aligned}
$$

Moreover we set:

$$
\left\{\begin{array}{l}
\left(\sum_{n \geq 0} \vec{a}_{n} x^{n}\right)_{\leq N}=\sum_{n \leq N} \vec{a}_{n} x^{n}, \\
\left(\sum_{n \geq 0} \vec{a}_{n} x^{n}\right)_{>N}=\sum_{n>N} \vec{a}_{n} x^{n},
\end{array} \quad \text { for all } \sum_{n \geq 0} \vec{a}_{n} x^{n} \in K[[x]]^{\nu}\right.
$$

Finally, for $g(x)=\sum_{n \geq 0} g_{n} x^{n} \in K[x]$ and for $\vec{y}=\sum_{n \geq 0} \vec{y}_{n} x^{n} \in K[[x]]^{\nu}$ we set:

$$
\begin{gathered}
h(g, v)=\sup _{n} \log ^{+}\left|g_{n}\right|_{v}, \forall v \in \mathcal{P} \\
h(g)=\sum_{v \in \mathcal{P}} h(g, v)
\end{gathered}
$$

and

$$
\widetilde{h}(n, v)=\sup _{s \leq n} \log ^{+}\left|\vec{y}_{s}\right|_{v}, \quad \forall v \in \mathcal{P}
$$

where $\left|\vec{y}_{s}\right|_{v}$ is the maximum of the v-adic absolute value of the entries of \vec{y}_{s}.
The following lemma is proved in [And89, VI, §3] or DGS94, Chap. VIII,§3] in the case of a number field. The proof in the present case is exactly the same, apart from the fact that there are no archimedean places in \mathcal{P} :

Proposition 7.4. Let $\tau \in(0,1)$ be a constant and $\vec{y}=\sum_{n \geq 0} \vec{y}_{n} x^{n} \in K[[x]]^{\nu}$. For all integers $N>0$ there exists $\vec{g}(x) \in K[x]^{\nu}$ having the following properties:

$$
\begin{gather*}
\operatorname{deg} g(x) \leq N \tag{7.4.1}\\
\operatorname{ord}(g \vec{y}) \leq N \geq 1+N+\left[N \frac{1-\tau}{\nu}\right] \tag{7.4.2}\\
h(g) \leq \text { const }+\frac{1-\tau}{\tau} \sum_{v \in \mathcal{P}} \widetilde{h}\left(N+\left[N \frac{1-\tau}{\nu}\right], v\right) . \tag{7.4.3}
\end{gather*}
$$

From now on we will assume that $\vec{P}(x)=(g \vec{y})_{\leq N}$.
Proposition 7.5. Let $Q_{1}(x) \in \mathcal{V}_{K}[x]$ be a polynomial such that $Q_{1}(x) A_{1}^{-1}(x) \in M_{\nu \times \nu}(K[x])$. We set:

$$
Q_{0}=1 \text { and } Q_{n}(x)=Q_{1}(x) Q_{n-1}(q x), \text { for all } n \geq 1
$$

and

$$
t=\sup \left(\operatorname{deg}\left(Q_{1}(x) A_{1}^{-1}(x)\right), \operatorname{deg} Q_{1}(x)\right)
$$

If $n \leq \frac{N}{t} \frac{1-\tau}{\nu}$, then

$$
\left(x^{n} Q_{n}(x) \frac{d_{q}^{n} g}{[n]_{q}^{!}}(x) \vec{y}(x)\right)_{\leq N+n t}=x^{n} Q_{n}(x) \vec{R}_{n}
$$

The proposition above is a consequence of the following lemmas:
Lemma 7.6. For each $n \geq 0$ we have:

$$
\begin{gather*}
x^{n} Q_{n}(x) \vec{R}_{n}(x) \in K[x]^{\nu} \tag{7.6.1}\\
\operatorname{deg} x^{n} Q_{n}(x) \vec{R}_{n}(x) \leq N+n t \tag{7.6.2}
\end{gather*}
$$

Proof. Clearly $\vec{R}_{0}=(g \vec{y})_{\leq N} \in K[x]^{\nu}$. We recall that there exist $c_{i, n} \in K$ such that (cf. [DV02, 1.1.10]):

$$
d_{q}^{n}=\frac{(-1)^{n}}{(q-1)^{n} x^{n}}\left(\sigma_{q}-1\right)\left(\sigma_{q}-q\right) \cdots\left(\sigma_{q}-q^{n-1}\right)=\frac{(-1)^{n}}{(q-1)^{n} x^{n}} \sum_{i=1}^{n} c_{i, n} \sigma_{q}^{i}
$$

for each $n \geq 1$. Therefore we obtain:

$$
\begin{aligned}
x^{n} Q_{n}(x) \vec{R}_{n} & =x^{n} Q_{n}(x) \mathcal{Y} \frac{d_{q}^{n}}{[n]_{q}^{!}}\left(\mathcal{Y}^{-1} \vec{P}\right) \\
& =\frac{Q_{n}(x) \mathcal{Y}}{[n]_{q}^{!}(q-1)^{n}} \sum_{i=0}^{n} c_{i, n} \sigma_{q}^{i}\left(\mathcal{Y}^{-1} \vec{P}\right) \\
& =\frac{1}{[n]_{q}^{!}(q-1)^{n}} \sum_{i=0}^{n} c_{i, n} Q_{n}(x) A_{i}^{-1}(x) \sigma_{q}^{i}(\vec{P}) .
\end{aligned}
$$

Since $A_{i}(x)=A_{1}\left(q^{i-1} x\right) \cdots A_{1}(x)$, we conclude that $x^{n} Q_{n}(x) \vec{R}_{n} \in K[x]^{\nu}$ and:

$$
\begin{aligned}
\operatorname{deg} x^{n} Q_{n}(x) \vec{R}_{n} & \leq \sup _{i=0, \ldots, n} \operatorname{deg}\left(Q_{n}(x) A_{i}^{-1}(x) \sigma_{q}^{i}(\vec{P})\right) \\
& \leq \sup _{i=0, \ldots, n}\left(\operatorname{deg}\left(Q_{i}(x) A_{i}^{-1}(x)\right)+\operatorname{deg} Q_{n-i}\left(q^{i} x\right)+\operatorname{deg} \sigma_{q}^{i}(\vec{P})\right) \\
& \leq N+n t
\end{aligned}
$$

Lemma 7.7.

$$
\operatorname{ord}\left(x^{n} Q_{n}(x) \frac{d_{q}^{n}(g)}{[n]_{q}^{!}}(x) \vec{y}(x)-x^{n} Q_{n}(x) \vec{R}_{n}\right) \geq 1+N+\left[N \frac{1-\tau}{\nu}\right]
$$

Proof. We have:

$$
\begin{aligned}
& x^{n} Q_{n}(x) \frac{d_{q}^{n}(g)}{[n]_{q}^{!}}(x) \vec{y}(x)-x^{n} Q_{n}(x) \vec{R}_{n} \\
& \quad=\frac{1}{[n]_{q}^{!}(q-1)^{n}} \sum_{l=0}^{n} c_{l, n} Q_{n}(x)\left(\sigma_{q}^{l}(g(x)) \vec{y}(x)-\mathcal{Y} \sigma_{q}^{l}\left(\mathcal{Y}^{-1} \vec{P}\right)\right) \\
& \quad=\frac{1}{[n]_{q}^{!}(q-1)^{n}} \sum_{l=0}^{n} c_{l, n} Q_{n}(x)\left(\sigma_{q}^{l}(g(x)) \vec{y}(x)-A_{l}^{-1}(x) \sigma_{q}^{l}(\vec{P})\right) .
\end{aligned}
$$

Let $\vec{H}_{l}=Q_{l}(x) \sigma_{q}^{l}(g(x)) \vec{y}(x)-Q_{l}(x) A_{l}^{-1}(x) \sigma_{q}^{l}(\vec{P})$. Since:

$$
A_{1}^{-1}(x) Q_{1}(x) \sigma_{q}\left(\vec{H}_{l}\right)=\vec{H}_{l+1}
$$

by induction on l we obtain:

$$
\operatorname{ord} \vec{H}_{l} \geq \operatorname{ord} \vec{H}_{l-1} \geq \operatorname{ord}(g(x) \vec{y}(x)-\vec{P}(x)) \geq 1+N+\left[N \frac{1-\tau}{\nu}\right]
$$

7.3. Step 2. The matrix $R^{<0>}$.

Theorem 7.8. Let $\vec{y}(x)=^{t}\left(y_{0}(x), \ldots, y_{\nu-1}(x)\right) \in K[[x]]^{\nu}$ a solution vector of $\Lambda Y=0$, such that $y_{0}(x), \ldots, y_{\nu-1}(x)$ are linearly independent over $K(x)$. Then there exists a constant $C(\Lambda)$, depending only on Λ, such that if

$$
\vec{P}={ }^{t}\left(P_{0} \ldots, P_{\nu-1}\right) \in K[x]^{\nu} \backslash\{\underline{0}\}
$$

has the following property:

$$
\operatorname{ord} \operatorname{det}\left(\begin{array}{ll}
P_{i} & P_{j} \tag{7.8.1}\\
y_{i} & y_{j}
\end{array}\right) \geq \operatorname{deg} \vec{P}(x)+C(\Lambda), \forall i, j=0, \ldots, \nu-1 \text {, }
$$

then the matrix $R^{<0>}$ is invertible.
Remark 7.9. We remark that if we choose g as in Propositions 7.4 and 7.5 and $\vec{P}=(g \vec{y})_{\leq N}$, for $N \gg 0$ we have:

$$
N \frac{1-\tau}{\nu} \geq C(\Lambda)
$$

Therefore the condition 7.8.1 is satisfied since:

$$
\operatorname{ord} \operatorname{det}\left(\begin{array}{ll}
P_{i} & P_{j} \\
y_{i} & y_{j}
\end{array}\right)=\operatorname{ord} \operatorname{det}\left(\begin{array}{cc}
\left(g y_{i}\right)_{>N} & \left(g y_{j}\right)_{>N} \\
y_{i} & y_{j}
\end{array}\right) \geq 1+N+N \frac{1-\tau}{\nu} .
$$

We recall the Shidlovsky's Lemma that we will need on the proof of Theorem 7.8 ,
Definition 7.10. We define total degree of $\frac{f(x)}{g(x)} \in K(x)$ as:

$$
\operatorname{deg} \cdot \operatorname{tot} \frac{f(x)}{g(x)}=\operatorname{deg} f(x)+\operatorname{deg} g(x)
$$

Lemma 7.11 (Shidlovsky's Lemma; cf. for instance DGS94, Chap. VIII, 2.2]). Let $\mathcal{G} / K(x)$ be a field extension and let $V \subset \mathcal{G}$ a K-vector space of finite dimension. Then the total degree of the elements of $K(x)$ that can be written as quotient of two element of V is bounded.
Proof of the Theorem 7.8. Let \mathcal{Y} be an invertible matrix with coefficients in an extension \mathcal{U} of $K(x)$ such that $\Lambda \mathcal{Y}=0$ and let C be the field of constant of \mathcal{U} with respect to d_{q}. The matrix

$$
R^{<0>}=\mathcal{Y}\left(\mathcal{Y}^{-1} \vec{P}, d_{q}\left(\mathcal{Y}^{-1} \vec{P}\right), \cdots, \frac{d_{q}^{\nu-1}}{[\nu-1]_{q}^{!}}\left(\mathcal{Y}^{-1} \vec{P}\right)\right)
$$

is invertible if and only if

$$
\operatorname{rank}\left(\mathcal{Y}^{-1} R^{<0>}\right)=\operatorname{rank}\left(\mathcal{Y}^{-1} \vec{P}, \sigma_{q}\left(\mathcal{Y}^{-1} \vec{P}\right), \ldots, \sigma_{q}^{\nu-1}\left(\mathcal{Y}^{-1} \vec{P}\right)\right)
$$

is maximal. Let us suppose that

$$
\operatorname{rank}\left(\mathcal{Y}^{-1} R^{<0>}\right)=r<\nu
$$

Then the q-analogue of the wronskian lemma ($c f$. for instance [DV02, §1.2]) implies that there exists an invertible matrix M with coefficients in C such that the first column of $M \mathcal{Y}^{-1} R^{<0>}$ is equal to:

$$
M \mathcal{Y}^{-1} \vec{P}={ }^{t}\left(\widetilde{w}_{0}, \widetilde{w}_{1}, \ldots, \widetilde{w}_{r-1}, 0, \ldots, 0\right)
$$

The matrix $\mathcal{Y} M^{-1}$ still verifies the q-difference equation $\Lambda Y=0$, so we will write \mathcal{Y} instead of $\mathcal{Y} M^{-1}$, to simplify notation. We set:

$$
\begin{gathered}
\vec{S}_{n}=\mathcal{Y} \circ \sigma_{q}^{n} \circ \mathcal{Y}^{-1} \vec{P}, \forall n \geq 0, \\
S^{<0>}=\left(\vec{S}_{0}, \ldots, \vec{S}_{\nu-1}\right)=\left(\begin{array}{cc}
S_{I J} & S_{I J^{\prime}} \\
S_{I^{\prime} J} & S_{I^{\prime} J^{\prime}}
\end{array}\right)
\end{gathered}
$$

and

$$
\mathcal{Y}^{-1}=\left(\begin{array}{ll}
\mathcal{Y}_{J L} & \mathcal{Y}_{J L^{\prime}} \\
\mathcal{Y}_{J^{\prime} L} & \mathcal{Y}_{J^{\prime} L^{\prime}}
\end{array}\right)
$$

where $I=J=L=\{0,1, \ldots, r-1\}$ and $I^{\prime}=J^{\prime}=L^{\prime}=\{r, \ldots, \nu-1\}$. We have:

$$
\left(\begin{array}{ll}
\mathcal{Y}_{J L} & \mathcal{Y}_{J L^{\prime}} \\
\mathcal{Y}_{J^{\prime} L} & \mathcal{Y}_{J^{\prime} L^{\prime}}
\end{array}\right)\left(\begin{array}{cc}
S_{I J} & S_{I J^{\prime}} \\
S_{I^{\prime} J} & S_{I^{\prime} J^{\prime}}
\end{array}\right)=\left(\sigma_{q}^{i}\left(\mathcal{Y}^{-1} \vec{P}\right)\right)_{i=0, \ldots, \nu-1}=\binom{A}{0}
$$

with $A \in M_{r \times \nu}(K(x))$, and therefore:

$$
\mathcal{Y}_{J^{\prime} L} S_{I J}+\mathcal{Y}_{J^{\prime} L^{\prime}} S_{I^{\prime} J}=0 .
$$

Because of our choice of \mathcal{Y}, the vectors $\vec{S}_{0}, \ldots, \vec{S}_{r-1}$ are linearly independent over $K(x)$, so by permutation of the entries of the vector \vec{P} we can suppose that the matrix $S_{I J}$ is invertible.

Let $B=S_{I^{\prime} J} S_{I J}^{-1}$. Since $S^{<0>} \in M_{\nu \times \nu}(K(x))$ is independent of the choice of the matrix \mathcal{Y}, the same is true for B. The matrix \mathcal{Y} is invertible and

$$
\left(\begin{array}{ll}
\mathcal{Y}_{J^{\prime} L} & \mathcal{Y}_{J^{\prime} L^{\prime}}
\end{array}\right)=\mathcal{Y}_{J^{\prime} L^{\prime}}\left(\begin{array}{ll}
-B & I_{\nu-r}
\end{array}\right),
$$

therefore the matrix $\mathcal{Y}_{J^{\prime} L^{\prime}}$ is also invertible and we have:

$$
B=-\mathcal{Y}_{J^{\prime} L^{\prime}}^{-1} \mathcal{Y}_{J^{\prime} L}
$$

The coefficients of the matrix B can be written in the form ξ / η, where ξ and η are elements of the K-vector space of polynomials of degree less or equal to $\nu-r$ with coefficients in K in the entries of the matrix \mathcal{Y}. By Shidlovsky's lemma the total degree of the entries of the matrix B is bounded by a constant depending only on the q-difference system Λ.

Let us consider the matrices:

$$
Q_{1}=\left(\begin{array}{ccccc}
y_{\nu-1} & 0 & 0 & \cdots & 0 \\
y_{1} & -y_{0} & 0 & \cdots & 0 \\
y_{2} & 0 & -y_{0} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
y_{r-1} & 0 & 0 & \cdots & -y_{0}
\end{array}\right) \in M_{r \times r}(K[[x]])
$$

and

$$
Q_{2}=\left(\begin{array}{cccc}
0 & \cdots & 0 & -y_{0} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & 0 \\
0 & \cdots & 0 & 0
\end{array}\right) \in M_{r \times \nu-r}(K[[x]])
$$

we set:

$$
T=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{S_{I J}}{S_{I^{\prime} J}}=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{\mathbb{I}_{r}}{B} S_{I J}
$$

Let $\left(b_{0}, \ldots, b_{r-1}\right)$ be the last row of B. We have:

$$
\begin{aligned}
& \operatorname{det}\left(T S_{I J}^{-1}\right)=\operatorname{det}\left(Q_{1}+Q_{2} B\right) \\
& =\operatorname{det}\left(\begin{array}{ccccc}
y_{\nu-1}-y_{0} b_{0} & -y_{0} b_{1} & -y_{0} b_{2} & \cdots & -y_{0} b_{r-1} \\
y_{1} & -y_{0} & 0 & \cdots & 0 \\
y_{2} & 0 & -y_{0} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
y_{r-1} & 0 & 0 & \cdots & -y_{0}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccccc}
y_{\nu-1}-y_{0} b_{0}-y_{1} b_{1}-\cdots-y_{r-1} b_{r-1} & 0 & 0 & \cdots & 0 \\
y_{1} & -y_{0} & 0 & \cdots & 0 \\
y_{2} & 0 & -y_{0} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
y_{r-1} & 0 & 0 & \cdots & -y_{0}
\end{array}\right) \\
& =\left(-y_{0}\right)^{r-1}\left(y_{\nu-1}-y_{0} b_{0}-y_{1} b_{1}-\cdots-y_{r-1} b_{r-1}\right) .
\end{aligned}
$$

We notice that $\operatorname{det}\left(T S_{I J}^{-1}\right) \neq 0$, since by hypothesis $y_{0}, \ldots, y_{\nu-1}$ are linearly independent over $K(x)$. Our purpose is to find a lower and an upper bound for ord $\operatorname{det}\left(T S_{I J}^{-1}\right)$.

Since the total degree of the entries of B is bounded by a constant depending only on Λ, there exists a constant C_{1}, depending on Λ and not on \vec{P}, such that:

$$
\operatorname{ord} \operatorname{det}\left(T S_{I J}^{-1}\right) \leq C_{1}
$$

Now we are going to determine a lower bound. Let:

$$
\vec{S}_{n}={ }^{t}\left(S_{n, 0}, S_{n, 2}, \ldots, S_{n, \nu-1}\right), \text { pour tout } n \geq 0
$$

then we have:

$$
S^{<0>}=\left(S_{i, j}\right)_{i, j \in\{0,1, \ldots, \nu-1\}}
$$

moreover we set:

$$
A_{1}^{-1}=\left(A_{i, j}\right)_{i, j \in\{0,1, \ldots, \nu-1\}} .
$$

The elements of the first row of T are of the form:

$$
\operatorname{det}\left(\begin{array}{cc}
y_{\nu-1} & S_{s, \nu-1} \\
y_{0} & S_{s, 0}
\end{array}\right), \text { pour } s=0, \ldots, r-1
$$

and the ones of the i-th row, for $i=1, \ldots, r-1$:

$$
\operatorname{det}\left(\begin{array}{ll}
y_{i} & S_{s, i} \\
y_{0} & S_{s, 0}
\end{array}\right), \text { pour } s=0, \ldots, r-1 .
$$

Since $\vec{S}_{n+1}=A_{1}(x)^{-1} \sigma_{q}\left(\vec{S}_{n}\right)$ we have:

$$
\operatorname{det}\left(\begin{array}{ll}
y_{i} & S_{s+1, i} \\
y_{j} & S_{s+1, j}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
y_{i} & \sum_{l} A_{i, l} \sigma_{q}\left(S_{s, l}\right) \\
y_{j} & \sum_{l} A_{j, l} \sigma_{q}\left(S_{s, l}\right)
\end{array}\right)
$$

therefore:

$$
\inf _{i, j=0, \ldots, \nu-1} \operatorname{ord} \operatorname{det}\left(\begin{array}{ll}
y_{i} & S_{s+1, i} \\
y_{j} & S_{s+1, j}
\end{array}\right) \geq(s+1) \operatorname{ord} A_{1}(x)^{-1}+\inf _{i, j=0, \ldots, \nu-1} \operatorname{ord} \operatorname{det}\left(\begin{array}{ll}
y_{i} & P_{i} \\
y_{j} & P_{j}
\end{array}\right) .
$$

Finally,

$$
\operatorname{ord} \operatorname{det} T \geq r(\nu-1) \operatorname{ord} A_{1}(x)^{-1}+r \inf _{i, j=0, \ldots, \nu-1} \operatorname{ord} \operatorname{det}\left(\begin{array}{ll}
y_{i} & P_{i} \\
y_{j} & P_{j}
\end{array}\right)
$$

By Lemma 7.6 we obtain:

$$
\begin{aligned}
\operatorname{ord} \operatorname{det} S_{I, J} & \leq \operatorname{deg}\left(\text { numerator of } \operatorname{det} S_{I, J}\right) \\
& \leq \sum_{i=0}^{r-1} \operatorname{deg}\left(\text { numerator of } \vec{S}_{i}\right) \\
& \leq r \operatorname{deg} \vec{P}+t \frac{r(r-1)}{2}
\end{aligned}
$$

We deduce that:

$$
\begin{aligned}
\operatorname{ord~det}\left(T S_{I, J}^{-1}\right) & \geq \operatorname{ord} \operatorname{det}(T)-\operatorname{ord} \operatorname{det}\left(S_{I, J}\right) \\
& \geq r\left((\nu-1) \operatorname{ord} A_{1}(x)^{-1}+\underset{i, j=0, \ldots, \nu-1}{\inf } \operatorname{ord} \operatorname{det}\left(\begin{array}{ll}
y_{i} & P_{i} \\
y_{j} & P_{j}
\end{array}\right)-\operatorname{deg} \vec{P}-t \frac{(r-1)}{2}\right) \\
& \geq r\left(\inf _{i, j} \operatorname{ord} \operatorname{det}\left(\begin{array}{ll}
y_{i} & P_{i} \\
y_{j} & P_{j}
\end{array}\right)-\operatorname{deg} \vec{P}\right)+C_{2},
\end{aligned}
$$

where C_{2} is a constant depending only on Λ. To conclude it is enough to choose a constant $C(\Lambda)>$ $\frac{C_{1}-C_{2}}{r}$.
7.4. Step 3. First part of estimates. We set:

$$
\begin{aligned}
& y=\sum_{n \geq 0} \vec{y}_{n} x^{n}, \text { with } \vec{y}_{n} \in K^{\nu} \\
& \sigma_{f}(\vec{y})=\limsup _{n \rightarrow+\infty} \frac{1}{n}\left(\sum_{v \in \mathcal{P}_{f}} \sup _{s \leq n} \log ^{+}\left|\vec{y}_{s}\right|_{v}\right) \\
& \sigma_{\infty}(\vec{y})=\limsup _{n \rightarrow+\infty} \frac{1}{n}\left(\sum_{v \in \mathcal{P}_{\infty}} \sup _{s \leq n} \log ^{+}\left|\vec{y}_{s}\right|_{v}\right) .
\end{aligned}
$$

We recall that we are working under the assumption:

$$
\sigma(y)=\limsup _{n \rightarrow+\infty} \frac{1}{n}\left(\sum_{v \in \mathcal{P}} \widetilde{h}(n, v)\right)=\sigma_{f}(\vec{y})+\sigma_{\infty}(\vec{y})<+\infty
$$

and that we want to show that $\sigma_{\mathcal{C}}^{(q)}(\mathcal{M}) \leq \infty$. Since $\sigma_{\mathcal{C}}^{(q)}(\mathcal{M}) \leq \sigma_{\mathcal{P}_{f}}^{(q)}(\mathcal{M})$, we will rather show that:

$$
\sigma_{\mathcal{P}_{f}}^{(q)}(\mathcal{M})=\limsup _{n \rightarrow+\infty} \frac{1}{n}\left(\sum_{v \in \mathcal{P}_{f}} h(\mathcal{M}, n, v)\right)<\infty
$$

where:

$$
h(\mathcal{M}, n, v)=\sup _{s \leq n} \log ^{+}\left|\frac{G_{n}}{[n]_{q}^{!}}\right|_{v, \text { Gauss }}
$$

In the sequel g will be a polynomial constructed as in Proposition 7.4. For such a choice of g and for $\vec{P}=(g \vec{y})_{\leq N}$, the hypothesis of Corollary 7.2 Proposition 7.4 and Theorem 7.8 are satisfied.

Proposition 7.12. We have:

$$
\sigma_{\mathcal{P}_{f}}^{(q)}(\mathcal{M}) \leq \sigma_{f}(\vec{y})\left(\frac{\nu^{2} t}{1-\tau}+t\right)+\Omega+\sum_{v \in \mathcal{P}_{f}} \log ^{+}\left|A_{1}(x)\right|_{v, \text { Gauss }}
$$

where:

$$
\Omega=\limsup _{n \rightarrow+\infty} \frac{1}{n}\left(\nu \sum_{v \in \mathcal{P}_{f}} h(g, v)+\sum_{v \in \mathcal{P}_{f}} \log ^{+}\left|\left(\prod_{i=1}^{\nu-1} Q_{i}(x)\right) \Delta(x)\right|_{v, \text { Gauss }}^{-1}\right)
$$

Proof. We fix $N, n \gg 0$ such that:

$$
\begin{equation*}
n+\nu-1 \leq \frac{N}{t} \frac{1-\tau}{\nu} \tag{7.12.1}
\end{equation*}
$$

Proposition 7.5 and Corollary 7.2 implies that for all integers $s \leq n+\nu-1$, we have:

$$
\begin{equation*}
\left(x^{s} Q_{s}(x) \frac{d_{q}^{s} g}{[s]_{q}^{!}}(x) \vec{y}(x)\right)_{\leq N+s t}=x^{s} Q_{s}(x) \vec{R}_{s} \tag{7.12.2}
\end{equation*}
$$

and:

$$
\left.G_{[} s\right]=\sum_{i \leq s}(-1)^{i} \alpha_{i}^{(n)} \frac{d_{q}^{s-i}}{[s-i]_{q}^{!}}\left(A_{i}(x) R^{<i>}\right)\left(R^{<0>}\right)^{-1}
$$

For all $v \in \mathcal{P}_{f}$ we deduce:

$$
\begin{aligned}
\left.\mid G_{[s}\right]\left.\right|_{v, \text { Gauss }} & \leq\left(\sup _{i \leq s}\left|\frac{d_{q}^{s-i}}{[s-i]_{q}^{!}}\left(A_{i}(x) R^{<i>}\right)\right|_{v, \text { Gauss }}\right)\left|\operatorname{adj} R^{<0>}\right|_{v, \text { Gauss }}\left|\operatorname{det} R^{<0>}\right|_{v, \text { Gauss }}^{-1} \\
& \leq\left(\sup _{i \leq s}\left|A_{i}(x) R^{<i>}\right|_{v, \text { Gauss }}\right)\left|\operatorname{adj} R^{<0>}\right|_{v, \text { Gauss }}\left|\operatorname{det} R^{<0>}\right|_{v, \text { Gauss }}^{-1} \\
& \leq C_{1, v}^{s}\left(\sup _{i \leq s+\nu-1}\left|\vec{R}_{i}\right|_{v, \text { Gauss }}\right)\left(\sup _{i \leq \nu-1}\left|\vec{R}_{i}\right|_{v, \text { Gauss }}\right)^{\nu-1}|\Delta(x)|_{v, \text { Gauss }}^{-1},
\end{aligned}
$$

where we have set:

$$
C_{1, v}=\sup \left(1,\left|A_{1}(x)\right|_{v, \text { Gauss }}\right)
$$

and

$$
\Delta(x)=\operatorname{det} R^{<0>}(x)
$$

Taking into account our choice of N and n and 7.12 .2 , for all $i \leq n+\nu-1$ we have:

$$
\begin{aligned}
\left|\vec{R}_{i}\right|_{v, \text { Gauss }} & \leq\left|Q_{i}(x)\right|_{v, \text { Gauss }}^{-1}\left|Q_{i}(x)\right|_{v, \text { Gauss }}|g|_{v, \text { Gauss }}\left|(\vec{y})_{\leq N+i t}\right|_{v, \text { Gauss }} \\
& \leq|g|_{v, \text { Gauss }}\left|(\vec{y})_{\leq N+i t}\right|_{v, \text { Gauss }}
\end{aligned}
$$

therefore:

$$
\begin{aligned}
\left.\sup _{s \leq n} \log ^{+} \mid G_{[} s\right]\left.\right|_{v, \text { Gauss }} \leq & n \log C_{1, v}+\widetilde{h}(N+(n+\nu-1) t, v) \\
& +(\nu-1) \widetilde{h}(N+(\nu-1) t, v)+\nu h(g, v)+\log ^{+}|\Delta|_{v, \text { Gauss }}^{-1}
\end{aligned}
$$

We set:

$$
\begin{aligned}
\bar{\Delta}(x) & =\vec{R}_{0} \wedge x Q_{1}(x) \vec{R}_{1} \wedge \cdots \wedge x^{\nu-1} Q_{\nu-1}(x) \vec{R}_{\nu-1} \\
& =x^{\binom{\nu}{2}}\left(\prod_{i=1}^{\nu-1} Q_{i}(x)\right) \Delta(x)
\end{aligned}
$$

The fact that $\left|Q_{1}(x)\right|_{v, \text { Gauss }} \leq 1$ and $x^{n} Q^{n}(x) \vec{R}_{n} \in K[x]^{\nu}$, for all integers $n \geq 1$, implies that $|\bar{\Delta}(x)|_{v, \text { Gauss }} \leq$ $|\Delta(x)|_{v, \text { Gauss }}$, with $\bar{\Delta}(x) \in K[x]$, and:

$$
\begin{aligned}
\left.\sup _{s \leq n} \log ^{+} \mid G_{[s}\right]\left.\right|_{v, \text { Gauss }} \leq & n \log C_{1, v}+\widetilde{h}(N+(n+\nu-1) t, v) \\
& +(\nu-1) \widetilde{h}(N+(\nu-1) t, v)+\nu h(g, v)+\log ^{+}|\bar{\Delta}|_{v, \text { Gauss }}^{-1}
\end{aligned}
$$

Taking into account condition 7.12.1), we fix a positive integer k such that:

$$
\left\{\begin{array}{l}
k>\frac{\nu(\nu-1) t}{1-\tau} \tag{7.12.3}\\
\frac{N}{n}=\frac{\nu t}{1-\tau}+\frac{k-\varepsilon_{n}}{n}, \text { for some } \varepsilon_{n} \in(0,1) \text { fixed }
\end{array}\right.
$$

Let us set:

$$
C_{1}=\sum_{v \in \mathcal{P}_{f}} \log ^{+}\left|A_{1}(x)\right|_{v}
$$

and

$$
\Omega=\limsup _{n \rightarrow+\infty} \frac{1}{n}\left(\nu \sum_{v \in \mathcal{P}_{f}} h(g, v)+\sum_{v \in \mathcal{P}_{f}} \log ^{+}|\bar{\Delta}(x)|_{v, \text { Gauss }}^{-1}\right)
$$

We obtain:

$$
\begin{aligned}
\sigma_{\mathcal{P}_{f}}^{(q)}(\mathcal{M}) & =\limsup _{n \rightarrow+\infty} \frac{1}{n}\left(\sum_{\substack{v \in \mathcal{P}_{f} \\
\mid 1-q^{\kappa / 1 /(p-1)}}} \sup _{s \leq n} \log ^{+}\left|\frac{G_{s}}{[s]_{q}^{!}}\right|_{v, \text { Gauss }}\right) \\
& \leq \sigma_{f}(\vec{y}) \limsup _{n \rightarrow+\infty}\left(\frac{N+(n+\nu-1) t}{n}+(\nu-1) \frac{N+(\nu-1) t}{n}\right)+C_{1}+\Omega \\
& \leq \sigma_{f}(\vec{y})\left(\frac{\nu t}{1-\tau}+t+(\nu-1) \frac{\nu t}{1-\tau}\right)+C_{1}+\Omega \\
& \leq \sigma_{f}(\vec{y})\left(\frac{\nu^{2} t}{1-\tau}+t\right)+C_{1}+\Omega
\end{aligned}
$$

7.5. Step 4. Conclusion of the proof of Theorem 4.2,

Lemma 7.13. Let Ω be as in the previous proposition. Then:

$$
\Omega \leq \frac{\nu^{2} t}{1-\tau} \sigma_{\infty}(\vec{y})+\frac{\nu^{2} t(\nu-1)}{1-\tau} C_{2}+\limsup _{n \rightarrow+\infty} \frac{\nu}{n} h(q),
$$

where

$$
C_{2}=\sum_{v \in \mathcal{P}_{\infty}} \log \left(1+|q|_{v}\right)
$$

is a constant depending on the v-adic absolute value of q, for all $v \in \mathcal{P}_{\infty}$.
Proof. Let ξ a root of unity such that:

$$
\bar{\Delta}(\xi) \neq 0 \neq Q_{i}(\xi) \forall i=0, \ldots \nu-1
$$

Since $|\bar{\Delta}(\xi)|_{v} \leq|\bar{\Delta}(x)|_{v, \text { Gauss }}$ for all $v \in \mathcal{P}_{f}$, the Product Formula implies that:

$$
\sum_{v \in \mathcal{P}_{f}} \log ^{+}|\bar{\Delta}(x)|_{v, \text { Gauss }}^{-1} \leq \sum_{v \in \mathcal{P}_{f}} \log ^{+}|\bar{\Delta}(\xi)|_{v}^{-1} \leq \sum_{v \in \mathcal{P}_{\infty}} \log ^{+}|\bar{\Delta}(\xi)|_{v}
$$

We recall that:

$$
\bar{\Delta}(x)=\operatorname{det}\left(\begin{array}{llll}
\vec{R}_{0} & Q_{1}(x) \vec{R}_{1} & \cdots & Q_{\nu-1}(x) \vec{R}_{\nu-1}
\end{array}\right)
$$

and that for all $s \leq \nu-1,(7.12 .2$ is verified. Moreover we have:

$$
\left.\begin{array}{rl}
Q_{s}(x) \frac{d_{q}^{s}(g)}{[s]_{q}^{!}}(x) \vec{y}(x) & =\sum_{n \geq 0}\left(\sum_{i+j+h=n}\left(Q_{s}\right)_{i}\left(\frac{d_{q}^{s}(g)}{[s]_{q}^{!}}\right)_{j} \vec{y}_{h}\right) x^{n} \\
& =\sum_{n \geq 0}\left(\sum_{i+j+h=n}\left(Q_{s}\right)_{i}\binom{s+j}{j}_{q} g_{s+j} \vec{y}_{h}\right.
\end{array}\right) x^{n},
$$

where we have used the notation:
for all $P \in K[[x]]$ and for all $n \in \mathbb{N}, P_{n}$ is the coefficient of x^{n} in P.

We deduce that $Q_{s}(\xi) \vec{R}_{s}(\xi)$ is a sum of terms of the type:

$$
\left(Q_{s}\right)_{i}\binom{s+j}{j}_{q} g_{s+j} \vec{y}_{h} \xi^{n}
$$

with:

$$
\begin{array}{ll}
0 \leq s \leq \nu-1, & 0 \leq i \leq \operatorname{deg} Q_{s}(x) \\
0 \leq j \leq N, s+j \leq N, & 0 \leq h \leq N+(\nu-1) t
\end{array}
$$

For all $v \in \mathcal{P}_{\infty}$ we obtain:

$$
\left|Q_{s}(\xi) \vec{R}_{s}(\xi)\right|_{v} \leq c_{v}\left(\sup _{s \leq j \leq N}\left|\binom{j}{s}_{q}\right|_{v}\right)\left(\sup _{h \leq N+(\nu-1) t}\left|\vec{y}_{h}\right|_{v}\right)\left(\sup _{j \leq N}\left|g_{j}\right|_{v}\right)
$$

with:

$$
c_{v}=\sup \left(1, \sup _{\substack{s=0, \ldots, \nu-1 \\ i=0, \ldots, \operatorname{deg} Q_{s}}}\left|\left(Q_{s}(x)\right)_{i}\right|_{v}\right)
$$

Since $|q|_{v} \neq 1$, for all $v \in \mathcal{P}_{\infty}$, we have:

$$
\begin{aligned}
\left|\binom{j}{s}_{q}\right|_{v} & =\left|\frac{\left(1-q^{j}\right) \cdots\left(1-q^{j-s+1}\right)}{\left(1-q^{s}\right) \cdots(1-q)}\right|_{v} \\
& \leq \frac{\left(1+|q|_{v}^{j}\right) \cdots\left(1+|q|_{v}^{j-s+1}\right)}{\left|1-|q|_{v}^{s}\right|_{v} \cdots\left|1-|q|_{v}\right|_{v}} \\
& \leq \begin{cases}\frac{\left(1+|q|_{v}\right)^{s}}{1-|q|_{v}^{s}} \leq\left(\frac{1+|q|_{v}}{1-|q|_{v}}\right)^{\nu-1} & \text { if }|q|_{v}<1 \\
\left(\frac{1+|q|_{v}^{j}}{|q|_{v}^{s}-1}\right)^{s} \leq\left(\frac{1+|q|_{v}^{N}}{|q|_{v}^{\nu-1}-1}\right)^{\nu-1} & \text { if }|q|_{v}>1\end{cases}
\end{aligned}
$$

hence:

$$
\begin{aligned}
\sup _{\substack{s=0, \ldots, \nu-1 \\
j=s, \ldots, N}}\left|\binom{j}{s}_{q}\right|_{v} & \leq\left(\frac{\sup \left(1+|q|_{v}, 1+|q|_{v}^{N}\right)}{\inf \left(\left|1-|q|_{v}\right|,\left|1-|q|_{v}^{\nu-1}\right|\right)}\right)^{\nu-1} \\
& \leq \frac{\left(1+|q|_{v}\right)^{N(\nu-1)}}{\inf \left(\left|1-|q|_{v}\right|,\left|1-|q|_{v}^{\nu-1}\right|\right)^{\nu-1}}
\end{aligned}
$$

We obtain the following estimate:

$$
\left|Q_{s}(\xi) \vec{R}_{s}(\xi)\right|_{v} \leq c_{v} \frac{\left(1+|q|_{v}\right)^{N(\nu-1)}}{\inf \left(\left|1-|q|_{v}\right|,\left|1-|q|_{v}^{\nu-1}\right|\right)^{\nu-1}}\left(\sup _{h \leq N+(\nu-1) t}\left|\vec{y}_{h}\right|_{v}\right)\left(\sup _{j \leq N}\left|g_{j}\right|_{v}\right)
$$

Finally we get:

$$
|\bar{\Delta}(\xi)|_{v} \leq c_{v}^{\nu} \frac{\left(1+|q|_{v}\right)^{N(\nu-1) \nu}}{\inf \left(\left|1-|q|_{v}\right|,\left|1-|q|_{v}^{\nu-1}\right|\right)^{(\nu-1) \nu}}\left(\sup _{h \leq N+(\nu-1) t}\left|\vec{y}_{h}\right|_{v}\right)^{\nu}\left(\sup _{j \leq N}\left|g_{j}\right|_{v}\right)^{\nu}
$$

and therefore:

$$
\begin{aligned}
& \sum_{v \in \mathcal{P}_{\infty}} \log ^{+}|\bar{\Delta}(\xi)|_{v} \leq \mathrm{const}+N \nu(\nu-1) C_{2} \\
& \quad-\nu(\nu-1) \sum_{v \in \mathcal{P}_{\infty}} \log \inf \left(\left|1-|q|_{v}\right|,\left|1-|q|_{v}^{\nu-1}\right|\right)^{\nu-1} \\
& \quad+\nu \sum_{v \in \mathcal{P}_{\infty}} h(g, v)+\nu \sum_{v \in \mathcal{P}_{\infty}} \widetilde{h}(N+(\nu-1) t, v)
\end{aligned}
$$

where:

$$
C_{2}=\sum_{v \in \mathcal{P}_{\infty}} \log \left(1+|q|_{v}\right)
$$

We recall that by (7.12.3), we have:

$$
\lim _{n \rightarrow+\infty} \frac{N}{n}=\frac{t \nu}{1-\tau}
$$

and:

$$
\lim _{n \rightarrow+\infty} \frac{\log N}{n}=0
$$

So we can conclude since:

$$
\begin{aligned}
& \limsup _{n \rightarrow+\infty} \frac{1}{n} \sum_{v \in \mathcal{P}_{f}} \log ^{+}|\bar{\Delta}(x)|_{v, \text { Gauss }}^{-1} \leq \limsup _{n \rightarrow+\infty} \frac{1}{n} \sum_{v \in \mathcal{P}_{\infty}} \log ^{+}|\bar{\Delta}(\xi)|_{v} \\
& \quad \leq \limsup _{n \rightarrow+\infty}\left(\frac{N \nu(\nu-1) C_{2}}{n}+\frac{\nu}{n} \sum_{v \in \mathcal{P}_{\infty}} h(g, v)+\frac{\nu}{n} \sum_{v \in \mathcal{P}_{\infty}} \widetilde{h}(N+(\nu-1) t, v)\right) \\
& \quad \leq \frac{t \nu^{2}(\nu-1)}{1-\tau} C_{2}+\limsup _{n \rightarrow+\infty}\left(\frac{\nu}{n} \sum_{v \in \mathcal{P}_{\infty}} h(g, v)+\frac{\nu}{n} \sum_{v \in \mathcal{P}_{\infty}} \widetilde{h}(N+(\nu-1)(t-1), v)\right) \\
& \quad \leq \frac{t \nu^{2}}{1-\tau} \sigma_{\infty}(\vec{y})+\frac{t \nu^{2}(\nu-1)}{1-\tau} C_{2}+\limsup _{n \rightarrow+\infty} \frac{\nu}{n} \sum_{v \in \mathcal{P}_{\infty}} h(g, v) .
\end{aligned}
$$

Conclusion of the proof of Theorem 4.2. Proposition 7.4 implies that:

$$
\begin{aligned}
\limsup _{n \rightarrow+\infty} \frac{\nu}{n} h(g) & \leq \limsup _{n \rightarrow+\infty} \frac{\nu}{n}\left(\text { const }+\frac{1-\tau}{\tau} \sum_{v \in \mathcal{P}} \widetilde{h}\left(N+N \frac{1-\tau}{\nu}, v\right)\right) \\
& \leq \limsup _{n \rightarrow+\infty} \frac{1-\tau}{\tau} \frac{\nu}{n} \sum_{v \in \mathcal{P}} \widetilde{h}\left(N+N \frac{1-\tau}{\nu}, v\right) \\
& \leq \frac{1-\tau}{\tau} \nu \sigma(\vec{y}) \limsup _{n \rightarrow+\infty} \frac{1}{n}\left(N+N \frac{1-\tau}{\nu}\right) \\
& \leq \frac{1-\tau}{\tau} \nu \sigma(\vec{y})\left(\frac{t \nu}{1-\tau}+t\right) \\
& \leq \frac{1-\tau}{\tau} \nu t\left(1+\frac{\nu}{1-\tau}\right) \sigma(\vec{y})
\end{aligned}
$$

which, combined with Propositions 7.12 and 7.13 implies that:

$$
\begin{aligned}
\sigma_{\mathcal{P}_{f}}^{(q)}(\mathcal{M}) \leq & \sigma_{f}(\vec{y})\left(\frac{\nu^{2} t}{1-\tau}+t\right)+\sigma_{\infty}(\vec{y}) \frac{\nu^{2} t}{1-\tau}+\sigma(\vec{y}) \frac{1-\tau}{\tau} \nu t\left(1+\frac{\nu}{1-\tau}\right) \\
& +\log C_{1}+\frac{\nu^{2}(\nu-1) t}{1-\tau} C_{2} \\
\leq & \sigma(\vec{y})\left(\frac{\nu^{2} t}{1-\tau}+\nu^{2} t\left(\frac{1}{\tau}+\frac{1-\tau}{\nu \tau}\right)+t\right)+\log C_{1}+\frac{\nu^{2}(\nu-1) t}{1-\tau} C_{2} \\
\leq & \sigma(\vec{y})\left(\nu^{2} t\left(\frac{\nu+1}{\nu} \frac{1}{\tau}+\frac{1}{1-\tau}\right)-\nu t+t\right)+\log C_{1}+\frac{\nu^{2}(\nu-1) t}{1-\tau} C_{2} .
\end{aligned}
$$

The function $\frac{\nu+1}{\nu} \frac{1}{\tau}+\frac{1}{1-\tau}$ has a minimum for

$$
\tau=\left(1+\sqrt{\frac{\nu}{\nu+1}}\right)^{-1}
$$

for this value of τ we get:

$$
\frac{\nu+1}{\nu} \frac{1}{\tau}+\frac{1}{1-\tau}=\left(1+\sqrt{\frac{\nu+1}{\nu}}\right) \leq \begin{cases}4.95 & \text { for } \nu \geq 2 \\ 5.9 & \text { for } \nu=1\end{cases}
$$

Finally we have:

$$
\sigma_{\mathcal{P}_{f}}^{(q)}(\mathcal{M}) \leq \log C_{1}+\frac{\nu^{2}(\nu-1) t}{1-\tau} C_{2}+ \begin{cases}\sigma(\vec{y})\left(4.95 \nu^{2} t-\nu t+(t-1)\right) & \text { for } \nu \geq 2 \\ \sigma(\vec{y}) 5.9 t & \text { for } \nu=1\end{cases}
$$

where

$$
C_{1}=\sum_{v \in \mathcal{P}_{f}} \log ^{+}\left|A_{1}(x)\right|_{v, \text { Gauss }}
$$

and

$$
C_{2}=\sum_{v \in \mathcal{P}_{\infty}} \log \left(1+|q|_{v}\right)
$$

Part 2. Global q-Gevrey series

8. Definition and first properties

The notation is the same as in Part 1. We recall that K is a finite extension of $k(q)$, equipped with its family of ultrametric norms, normalized so that the Product Formula holds. The field $K(x)$ is naturally a q-difference algebra with respect to the operator $\sigma_{q}: f(x) \mapsto f(q x)$.
Definition 8.1. We say that the series $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in K[[x]]$ is a global q-Gevrey series of orders $\left(s_{1}, s_{2}\right) \in \mathbb{Q}^{2}$ if it is solution of a q-difference equation with coefficients in $K(x)$ and

$$
\sum_{n=0}^{\infty} \frac{a_{n}}{\left(q^{\frac{n(n-1)}{2}}\right)^{s_{1}}\left([n]_{q}^{!}\right)^{s_{2}}} x^{n}
$$

is a G_{q}-function.
Remark 8.2. We point out that:
(1) The definition above forces s_{2} to be an integer, in fact the q-holonomy condition implies that the coefficients $[n]_{q}^{!^{s_{2}}}$, for $n \geq 1$, are all contained in a finite extension of $k(q)$.
(2) Being a global q-Gevrey series of orders $\left(s_{1}, s_{2}\right)$ implies being a q-Gevrey series of order $s_{1}+s_{2}$ in the sense of BB92 for all $v \in \mathcal{P}_{\infty}$ extending the q^{-1}-adic norm, i.e. for the norms that verify $|q|_{v}>1$: this simply means that $\left|q^{\frac{s_{1} n(n-1)}{2}}[n]_{q}^{s_{2}}\right|_{v}$ as the same growth as $|q|_{v}^{\left(s_{1}+s_{2}\right) \frac{n(n-1)}{2}}$. If $v \in \mathcal{P}_{\infty}$ and $|q|_{v}<1$, then $\left|[n]_{q}\right|_{v}=1$. Therefore a global q-Gevrey series of orders $\left(s_{1}, s_{2}\right)$ is a q-Gevrey series of order s_{1} in the sense of [BB92]. This remark actually justifies the the choice of considering two orders, instead of one as in the analytic theory.

In the local case, both complex (cf. [Béz92, [MZ00, Zha99]) and p-adic ($c f$. [BB92]), the q-Gevrey order is not uniquely determined. The global situation considered here is much more rigid: the same happens in the differential case.
Proposition 8.3. The orders of a given global q-Gevrey series $\sum_{n=0}^{\infty} a_{n} x^{n} \in K[[x]] \backslash K[x]$ are uniquely determined.

Proof. Suppose that $\sum_{n=0}^{\infty} a_{n} x^{n}$ is a global q-Gevrey series of orders $\left(s_{1}, s_{2}\right)$ and $\left(t_{1}, t_{s}\right)$. By definition

$$
\sum_{n=0}^{\infty} \frac{a_{n}}{\left(q^{\frac{n(n-1)}{2}}\right)^{s_{1}}\left([n]_{q}^{!}\right)^{s_{2}}} x^{n} \text { and } \sum_{n=0}^{\infty} \frac{a_{n}}{\left(q^{\frac{n(n-1)}{2}}\right)^{t_{1}}\left([n]_{q}^{!}\right)^{t_{2}}} x^{n}
$$

have finite size. We have:

$$
\sum_{n=0}^{\infty} \frac{a_{n}}{\left(q^{\frac{n(n-1)}{2}}\right)^{t_{1}}\left([n]_{q}^{!}\right)^{t_{2}}} x^{n}=\sum_{n=0}^{\infty}\left(q^{\frac{n(n-1)}{2}}\right)^{s_{1}-t_{1}}\left([n]_{q}^{!}\right)^{s_{2}-t_{2}} \frac{a_{n}}{\left(q^{\frac{n(n-1)}{2}}\right)^{s_{1}}\left([n]_{q}^{!}\right)^{s_{2}}} x^{n}
$$

One observes that having finite size implies having finite radius of convergence for all $v \in \mathcal{P}$, therefore for all v such that $|q|_{v} \neq 1$ we must have:

$$
\limsup _{n \rightarrow \infty}\left|\left(q^{\frac{n(n-1)}{2}}\right)^{s_{1}-t_{1}}\left([n]_{q}^{!}\right)^{s_{2}-t_{2}}\right|_{v}^{1 / n}<\infty
$$

If $|q|_{v}>1$ this implies:

$$
\limsup _{n \rightarrow \infty}|q|_{v}^{\frac{n-1}{2}\left(s_{1}+s_{2}-\left(t_{1}+t_{2}\right)\right)}<\infty
$$

Since for all $v \in \mathcal{P}$ such that $|q|_{v}<1$ the limit $\lim \sup _{n \rightarrow \infty}\left|[n]_{q}^{!}\right|_{v}^{1 / n}$ is bounded we get:

$$
\limsup _{n \rightarrow \infty}|q|_{v}^{\frac{n-1}{2}\left(s_{1}-t_{1}\right)}<\infty .
$$

We deduce that necessarily $s_{1}+s_{2} \leq t_{1}+t_{2}$ and $t_{1} \leq s_{1}$, hence $t_{1} \leq s_{1}$ and $s_{2} \leq t_{2}$. Since the role of $\left(t_{1}, t_{2}\right)$ and $\left(s_{1}, s_{2}\right)$ is symmetric, one obviously obtain the opposite inequalities in the same way.
8.1. Changing q in q^{-1}. One can transform a q-difference equations in a q^{-1}-difference equations, obtaining:

Proposition 8.4. Let $f(x) \in K[[x]]$ be a global q-Gevrey series of orders $\left(-s_{1},-s_{2}\right) \in \mathbb{Q}^{2}$, then $f(x)$ is a global q^{-1}-Gevrey series of orders $\left(s_{1}+s_{2},-s_{2}\right)$.

In particular, if $f(x)$ is a global q-Gevrey series of orders $\left(t_{1},-t_{2}\right)$, with $t_{1} \geq t_{2} \geq 0$, then $f(x)$ is a global q^{-1}-Gevrey series of negative orders $\left(-\left(t_{1}-t_{2}\right),-t_{2}\right)$.

Proof. It is enough to write $f(x)$ in the form:

$$
f(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{\left(q^{\frac{n(n-1)}{2}}\right)^{s_{1}}\left([n]_{q}^{!}\right)^{s_{2}}} x^{n}=\sum_{n=0}^{\infty} \frac{a_{n}}{\left(q^{-\frac{n(n-1)}{2}}\right)^{-s_{1}-s_{2}}\left([n]_{q^{-1}}^{!}\right)^{s_{2}}} x^{n}
$$

where $\sum_{n} a_{n} x^{n}$ is a convenient G_{q}-function.
8.2. Rescaling of the orders. Clearly we can always look at a global q-Gevrey series of orders $(s, 0)$ as a global q^{t}-Gevrey series of orders $(s / t, 0)$, for any $t \in \mathbb{Q}, t \neq 0$, the holonomy condition being always satisfied:

Lemma 8.5. Let $t \in \mathbb{Q}, t \neq 0$. If $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is solution of a q-difference equation then it is solution of a q^{t}-difference equation.

Proof. If $f(x)$ is solution of a q-difference equation, then it is also solution of a q^{-1}-difference equation. Therefore we can suppose $t>0$. Let $t=\frac{p}{r}$, with $p, r \in \mathbb{Z}_{>0}$. Since $f(x)$ is solution of a q-difference operator, we have:

$$
\operatorname{dim}_{K(x)} \sum_{i \geq 0} K(x) \sigma_{q}^{i}(f(x))<+\infty
$$

Then:

$$
\operatorname{dim}_{K(x)} \sum_{i \geq 0} K(x) \sigma_{q^{p}}^{i}(f(x))=\operatorname{dim}_{K(x)} \sum_{i \geq 0} K(x) \sigma_{q}^{i p}(f(x)) \leq \operatorname{dim}_{K(x)} \sum_{i \geq 0} K(x) \sigma_{q}^{i}(f(x))<+\infty
$$

so $f(x)$ is solution of a q^{p}-difference operator. Finally we can conclude since $\sum_{i=0}^{\nu} a_{i}(x) f\left(q^{p i} x\right)=0$ implies that $\sum_{i=0}^{\nu} a_{i}(x) f\left(\widetilde{q}^{t i r} x\right)=0$.

Unfortunately, the same is not true for global q-Gevrey series of orders $(0, s)$. To prove it, one can calculate size of the series

$$
\Phi(x)=\sum_{n \geq 0} \frac{(\widetilde{q} ; \widetilde{q})_{n}^{t}}{(q ; q)_{n}} x^{n}
$$

where \widetilde{q} is a r-th root of q, for some positive integer $r, K=\mathbb{Q}(\widetilde{q})$ and t is an integer. The Pochhammer symbols $(\widetilde{q} ; \widetilde{q})_{n}^{t}$ and $(q ; q)_{n}$ are both polynomials in $\widetilde{q}^{1 / 2}$ of degree $\operatorname{tn}(n+1)$ and $r n(n+1)$, respectively. If we want $\Phi(x)$ to have finite size, we are forced to take $t \leq r$, so that it has positive radius of convergence at any place v such that $|q|_{v}>1$. Notice that $\Phi(x)$ is convergent for any place v such that $|q|_{v}<1$ and that the noncyclotomic places give a zero contribution to the size. As far as the cyclotomic places of K is concerned, we obtain

$$
\sigma_{\mathcal{C}}(y)=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{r n}\left(\left[\frac{n}{k}(k, r)\right]-t\left[\frac{n}{k}\right]\right) \log ^{+} d^{-1} \sim \limsup _{n \rightarrow \infty} \sum_{k=1}^{r n} \frac{1}{k}((k, r)-t) \log d^{-1}
$$

The limit above is infinite.

9. Formal Fourier transformations

The following natural two q-analogues of the usual formal Borel transformation

$$
\begin{array}{rlcc}
(\cdot)^{+}: & K[[x]] & \longrightarrow & K\left[\left[z^{-1}\right]\right] \\
& F=\sum_{n=0}^{\infty} a_{n} x^{n} & \longmapsto & F^{+}=\sum_{n=0}^{\infty}[n]_{q}^{!} a_{n} z^{-n-1}
\end{array}
$$

and

$$
\begin{array}{rccc}
(\cdot)^{\#}: & K[[x]] & \longrightarrow & K\left[\left[z^{-1}\right]\right] \\
F=\sum_{n=0}^{\infty} a_{n} x^{n} & \longmapsto & F^{\#}=\sum_{n=0}^{\infty} q^{\frac{n(n-1)}{2}} a_{n} z^{-n-1}
\end{array}
$$

are equally considered in the literature on q-difference equations. From an archimedean analytical point of view, they are equivalent as soon as one works under the hypothesis that $|q| \neq 1$ (cf. [MZ00, §8] and [DVZ07 Part II]). As already noticed in And00b, from a global point of view, (. $)^{+}$and $(\cdot)^{\#}$ have a completely different behavior: for the same reason the definition of global q-Gevrey series involves two orders.

Let $p=q^{-1}$ and let $\left.\sigma_{p}: z \mapsto p z, d_{p}=\frac{\sigma_{p}-1}{(p-1) z}\right)^{2}$. The Borel transformations that we have introduced above have the following properties:

Lemma 9.1. For all $F=\sum_{n=0}^{\infty} a_{n} x^{n} \in K[[x]]$ we have:

$$
\begin{array}{ll}
(x F)^{+}=-p d_{p} F^{+}, & \left(d_{q} F\right)^{+}=z F^{+}-F(0), \\
(x F)^{\#}=\frac{p}{z} \sigma_{p} F^{\#}, & \left(\sigma_{q} F\right)^{\#}=p \sigma_{p} F^{\#}
\end{array}
$$

Proof. We deduce the first equality using the relation:

$$
-p d_{p} \frac{1}{z^{n}}=[n]_{q} \frac{1}{z^{n+1}}
$$

All the other formulas easily follow from the definitions.
For any q-difference operator $\sum_{i=0}^{N} a_{i}(x) \sigma_{q}^{i} \in K(x)\left[\sigma_{q}\right]$ (resp. $\sum_{i=0}^{N} b_{i}(x) d_{q}^{i} \in K(x)\left[d_{q}\right]$) we set:

$$
\begin{gathered}
\operatorname{deg}_{\sigma_{q}} \sum_{i=0}^{\nu} a_{i}(x) \sigma_{q}^{i}=\sup \left\{i \in \mathbb{Z}: 0<i<\nu, a_{i}(x) \neq 0\right\} \\
\left(\text { resp. } \operatorname{deg}_{d_{q}} \sum_{i=0}^{\nu} b_{i}(x) d_{q}^{i}=\sup \left\{i \in \mathbb{Z}: 0<i<\nu, b_{i}(x) \neq 0\right\}\right)
\end{gathered}
$$

Obviously we have $K(x)\left[d_{q}\right]=K(x)\left[\sigma_{q}\right]$ and $\operatorname{deg}_{d_{q}}=\operatorname{deg}_{\sigma_{q}}$ (for explicit formulas $c f$. [DV02, 1.1.10] and (10.0.3) below). The previous lemma justifies the definition of the formal Fourier transformations below, acting on the skew rings $K\left[x, d_{q}\right]$ and $K\left[x, \sigma_{q}\right]$:

Definition 9.2. We call the maps:

$$
\left.\begin{array}{rllllll}
\mathcal{F}_{q^{+}}: K\left[x, d_{q}\right] & \longrightarrow & \longrightarrow\left[z, d_{p}\right] & \text { and } & \mathcal{F}_{q^{\#}} & : K\left[x, \sigma_{q}\right] & \longrightarrow
\end{array}\right) K\left[\frac{1}{z}, \sigma_{p}\right]
$$

the q^{+}-Fourier transformation and the $q^{\#}$-Fourier transformation respectively.

[^2]Remark 9.3. Let $\mathcal{F}_{p}: K\left[z, d_{p}\right] \rightarrow K\left[x, d_{q}\right]$ and let $\lambda: K\left[x, d_{q}\right] \rightarrow K\left[x, d_{q}\right], d_{q} \mapsto-\frac{1}{q} d_{q}, x \mapsto-q x$ Then $\mathcal{F}_{q^{+}}^{-1}=\lambda \circ \mathcal{F}_{p^{+}}$.

As far as $\mathcal{F}_{q^{\#}}$ is concerned, if $\mathcal{L}=\sum_{i=0}^{\nu} a_{i}\left(\frac{1}{z}\right) \sigma_{p}^{i} \in K\left[\frac{1}{z}, \sigma_{p}\right]$ is such that $\operatorname{deg}_{\frac{1}{z}} a_{i}\left(\frac{1}{z}\right) \leq i$, there exists a unique $\mathcal{N} \in K\left[x, \sigma_{q}\right]$ such that $\mathcal{F}_{q^{\#}}(\mathcal{N})=\mathcal{L}$ and we note $\mathcal{F}_{q^{\#}}^{-1}(\mathcal{L})=\mathcal{N}$.

In the following lemma we verify that the formal Fourier transformations we have just defined are compatible with the Borel transformations $(\cdot)^{+}$and $(\cdot)^{\#}$:
Lemma 9.4. Let $F \in K[[x]]$ be a series solution of a q-difference linear operator $\mathcal{N} \in K\left[x, d_{q}\right]$, such that $\nu=\operatorname{deg}_{d_{q}} \mathcal{N}\left(\operatorname{resp} . \mathcal{N} \in K\left[x, \sigma_{q}\right]\right)$. Then $d_{q^{-1}}^{\nu} \circ \mathcal{F}_{q^{+}}(\mathcal{N}) F^{+}=0\left(\right.$ resp. $\left.\mathcal{F}_{q^{\#}}(\mathcal{N}) F^{\#}=0\right)$.

Inversely:
(1) If F^{+}is a solution of $\mathcal{L}_{1} \in K\left[z, d_{p}\right]$, then $\mathcal{F}_{q^{+}}^{-1}\left(\mathcal{L}_{1}\right) F=0$.
(2) If $\mathcal{L}_{2} \in K\left[\frac{1}{z}, \sigma_{p}\right]$ is such that $\mathcal{L}_{2} F^{\#}=0$, for all $n \in \mathbb{N}, n \gg 0$, we have: $\mathcal{F}_{q^{\#}}^{-1}\left(\sigma_{p}^{n} \circ \mathcal{L}_{2}\right) F=0$.

Proof. We prove the statements for $(\cdot)^{+}$. The proof for $(\cdot)^{\#}$ is quite similar. We write \mathcal{N} in the form:

$$
\mathcal{N}=\sum_{j=0}^{\nu} \sum_{i=0}^{N} a_{i, j} x^{i} d_{q}^{j} \in K\left[x, d_{q}\right]
$$

Lemma 9.1 implies that $\mathcal{F}_{q^{+}}(\mathcal{N}) F^{+}$is a polynomial of degree less or equal to ν, therefore $d_{q^{-1}}^{\nu} \circ$ $\mathcal{F}_{q^{+}}(\mathcal{N}) F^{+}=0$. Let us now write \mathcal{L}_{1} as:

$$
\mathcal{L}_{1}=\sum_{j=0}^{\nu} \sum_{i=0}^{N} a_{i, j} z^{i} d_{p}^{j} \in K\left[z, d_{p}\right]
$$

Then $\left(\mathcal{F}_{q^{+}}^{-1}\left(\mathcal{L}_{1}\right) F\right)^{+}$is a polynomial of degree less or equal to ν. Hence we obtain:

$$
d_{p}^{\nu}\left(\mathcal{F}_{q^{+}}^{-1}\left(\mathcal{L}_{1}\right) F\right)^{+}=\left((-q x)^{\nu} \mathcal{F}_{q^{+}}^{-1}\left(\mathcal{L}_{1}\right) F\right)^{+}=0
$$

and finally $(-q x)^{\nu} \mathcal{F}_{q^{+}}^{-1}\left(\mathcal{L}_{1}\right) F=0$.
Remark 9.5. In the following we will use the formal Fourier transformations above composed with the symmetry $S: z \mapsto 1 / x$:

$$
S \circ \mathcal{F}_{q^{+}}: K\left[x, d_{q}\right] \quad \longrightarrow \quad K\left[\frac{1}{x}, x, d_{q}\right] \quad \text { and } \quad S \circ \mathcal{F}_{q^{\#}}: K\left[x, \sigma_{q}\right] \quad \longrightarrow \quad K\left[x, \sigma_{q}\right]
$$

$$
\begin{array}{rlclll}
d_{q} & \longmapsto & \frac{1}{x} & \sigma_{q} & \longmapsto & \frac{1}{q} \sigma_{q} \tag{9.5.1}\\
x & \longmapsto & x^{2} d_{q} & x & \longmapsto & \frac{x}{q} \sigma_{q}
\end{array}
$$

Notice that $S \circ \mathcal{F}_{q^{+}}\left(d_{q} \circ x\right)=x d_{q}$.

10. Action of the formal Fourier transformations on the Newton Polygon

Let as consider a linear q-difference operator:

$$
\begin{equation*}
\mathcal{N}=\sum_{i=0}^{\nu} a_{i}(x) x^{i} d_{q}^{i}=\sum_{i=0}^{\nu} b_{i}(x) \sigma_{q}^{i} \tag{10.0.2}
\end{equation*}
$$

such that $b_{j}(x), a_{j}(x) \in K[x]$. Applying formulas [DV02, 1.1.10], we obtain:

$$
\begin{align*}
\mathcal{N} & =\sum_{j=0}^{\nu} b_{j}(x) \sum_{i=0}^{j}\binom{j}{i}_{q}(1-q)^{i} q^{i(i-1) / 2} x^{i} d_{q}^{i} \\
& =\sum_{i=0}^{\nu}(1-q)^{i} q^{i(i-1) / 2}\left(\sum_{j=i}^{\nu}\binom{j}{i}_{q} b_{j}(x)\right) x^{i} d_{q}^{i} \tag{10.0.3}
\end{align*}
$$

Therefore $a_{i}(x)=(1-q)^{i} q^{i(i-1) / 2} \sum_{j=i}^{\nu}\binom{j}{i}_{q} b_{j}(x)$.
We recall the definition of the Newton-Ramis Polygon:

Definition 10.1. Let $\mathcal{N}=\sum_{i=0}^{\nu} a_{i}(x) x^{i} d_{q}^{i}=\sum_{i=0}^{\nu} b_{i}(x) \sigma_{q}^{i}$ be such that $b_{j}(x), a_{j}(x) \in K[x]$. Then we define the Newton-Ramis Polygon of \mathcal{N} with respect to σ_{q} (and we write $N R P_{\sigma_{q}}(\mathcal{N})$) (resp. with respect to d_{q} (and we write $\left.N R P_{d_{q}}(\mathcal{N})\right)$) to be the convex hull of the following set:

$$
\begin{gathered}
\underset{b_{i}(x) \neq 0}{\cup}\left\{(u, v) \in \mathbb{R}^{2}: u=i, \operatorname{deg}_{x} b_{i}(x) \geq v \geq \operatorname{ord}_{x} b_{i}(x)\right\} \subset \mathbb{R}^{2} . \\
\left(\text { resp. } \underset{a_{i}(x) \neq 0}{\cup}\left\{(u, v) \in \mathbb{R}^{2}: u \leq i, \operatorname{deg}_{x} a_{i}(x) \geq v \geq \operatorname{ord}_{x} a_{i}(x)\right\} \subset \mathbb{R}^{2}\right) .
\end{gathered}
$$

For an operator with rational coefficient \mathcal{N}, we set $N R P_{\sigma_{q}}(\mathcal{N})=N R P_{\sigma_{q}}(f(x) \mathcal{N})$ and $N R P_{d_{q}}(\mathcal{N})=$ $N R P_{d_{q}}(f(x) \mathcal{N})$, where $f(x)$ is a polynomial in $K[x]$ such that $f(x) \mathcal{N}$ can be written as above. In this way the Newton-Ramis polygon is defined up to a vertical shift, so that its slopes are actually well-defined.

Lemma 10.2. We have:

$$
N R P_{d_{q}}(\mathcal{N})=\cup_{\left(u_{0}, v_{0}\right) \in N R P_{\sigma_{q}}(\mathcal{N})}^{\cup}\left\{\left(u, v_{0}\right) \in \mathbb{R}^{2}: u \leq u_{0}\right\}
$$

Proof. The statement follows from 10.0 .3 .
The following proposition describes the behavior of the Newton-Ramis Polygon with respect to $\mathcal{F}_{q^{+}}$ and $\mathcal{F}_{q^{\#}}$.

Proposition 10.3. The mar ${ }^{3}$:

$$
\begin{array}{clcccc}
N R P_{\sigma_{q}}(\mathcal{N}) & \longrightarrow & N R P_{\sigma_{p}}\left(\mathcal{F}_{q^{\#}}(\mathcal{N})\right) \\
(u, v) & \longmapsto & (u+v,-v)
\end{array} \quad\left(\begin{array}{cccc}
N R P_{d_{q}}(\mathcal{N}) & \longrightarrow & N R P_{d_{p}}\left(\mathcal{F}_{q^{+}}(\mathcal{N})\right) \\
\text { resp. } & (u, v) & \longmapsto & (u+v,-v)
\end{array}\right)
$$

is a bijection between $N R P_{\sigma_{q}}(\mathcal{N})$ and $N R P_{\sigma_{p}}\left(\mathcal{F}_{q^{\#}}(\mathcal{N})\right)\left(\right.$ resp. $N R P_{d_{q}}(\mathcal{N})$ and $N R P_{d_{p}}\left(\mathcal{F}_{q^{+}}(\mathcal{N})\right)$).
Proof. As far as $\mathcal{F}_{q^{\#}}$ is concerned, it is enough to notice that:

$$
\mathcal{F}_{q^{\#}}\left(\sum_{i=0}^{\nu} \sum_{j=0}^{N} b_{i, j} x^{j} \sigma_{q}^{i}\right)=\sum_{i=0}^{\nu} \sum_{j=0}^{N} \frac{b_{i, j}}{q^{j(j-3) / 2} q^{i}} \frac{1}{z^{j}} \sigma_{p}^{i+j} .
$$

Let

$$
\mathcal{N}=\sum_{i=0}^{\nu} \sum_{j=0}^{N} a_{i, j} x^{j} d_{q}^{i}
$$

We have:

$$
\begin{aligned}
\mathcal{F}_{q^{+}}(\mathcal{N}) & =\sum_{i=0}^{\nu} \sum_{j=0}^{N} \frac{(-1)^{j} a_{i, j}}{q^{j}} d_{p}^{j} \circ z^{i} \\
& =\sum_{i=0}^{\nu} \sum_{j=0}^{\nu} \sum_{h=0}^{j} \frac{(-1)^{j} a_{i, j}}{q^{j}}\binom{j}{h}_{q} \frac{[i]_{q}^{!}}{[h-i]_{q}^{!}} q^{(j-h)(i-h)} z^{i-h} d_{p}^{j-h} .
\end{aligned}
$$

Then if $(i, j-i) \in N R P_{d_{q}}(\mathcal{N})$ we have:

$$
(j-h, i-j) \in N R P_{d_{p}}\left(\mathcal{F}_{q^{+}}(\mathcal{N})\right) \text { for all } h=0, \ldots, j
$$

The statement follows from this remark.
By convention, the vertical sides of $\left.N R P_{\sigma_{q}}(\mathcal{N})\right)\left(\right.$ resp. $N R P_{d_{q}}(\mathcal{N})$) have slope ∞. The opposite of the finite slopes of the "upper part" of $N R P_{\sigma_{q}}(\mathcal{N})$ are the slopes at ∞ of \mathcal{N} while the finite slopes of the "lower part" are the slopes of \mathcal{N} at 0 .

[^3]Corollary 10.4. In the notation of the previous proposition, $\mathcal{F}_{q^{\#}}$ (resp. $\mathcal{F}_{q^{+}}$) acts in the following way on the slopes of the Newton-Ramis Polygon:

$$
\left.\left.\begin{array}{rl}
\left\{\text { slopes of } N R P_{\sigma_{q}}(\mathcal{N})\right\} & \longrightarrow
\end{array}\right)\left\{\text { slopes of } N R P_{\sigma_{p}}\left(\mathcal{F}_{q^{\#}}(\mathcal{N})\right)\right\} .\right\}
$$

11. Solutions at points of K^{*}

We have described what happens at zero and at ∞ when the Fourier transformations act. Now we want to describe what happens at a point $\xi \in K^{*}=\mathbb{P}^{1}(K) \backslash\{0, \infty\}$.

To construct some formal solutions of our q-difference operators at $\xi \in K^{*}$, we are going to consider a ring defined as follows (cf. DV04, §1.3]). For any $\xi \in K$ and any nonnegative integer n, we consider the polynomials

$$
T_{n}^{q}(x, \xi)=x^{n}\left(\frac{\xi}{x} ; q\right)_{n}=(x-\xi)(x-q \xi) \cdots\left(x-q^{n-1} \xi\right) .
$$

One verifies directly that for any $n \geq 1$

$$
d_{q} T_{n}^{q}(x, \xi)=[n]_{q} T_{n-1}^{q}(x, \xi)
$$

and $d_{q} T_{0}^{q}(x, \xi)=0$. The product $T_{n}^{q}(x, \xi) T_{m}^{q}(x, \xi)$ can be written as a linear combination with coefficients in K of $T_{0}^{q}(x, \xi), T_{1}^{q}(x, \xi), \ldots, T_{n+m}^{q}(x, \xi)(c f$. [DV04, §1.3]). It follows that we can define the ring:

$$
K[[x-\xi]]_{q}=\left\{\sum_{n \geq 0} a_{n} T_{n}^{q}(x, \xi): a_{n} \in K\right\}
$$

with the obvious sum and the Cauchy product described above, extended by linearity. The ring $K[[x-\xi]]_{q}$ is a q-difference algebra with the natural action of d_{q}. Notice that in general it makes no sense to look at the sum of those series. Nevertheless, they can be evaluated at the point of the set $\xi q^{\mathbb{Z}} \geq 0$, and they are actually in bijective correspondence with the sequences $\left\{f\left(\xi q^{n}\right)\right\}_{n \in \mathbb{Z}_{\geq 0}} \in \mathbb{C}^{\mathbb{N}}$.
Proposition 11.1. Let $\mathcal{N} \in K\left[x, d_{q}\right]$ be a linear q-difference operator such that $N R P_{d_{q}}(\mathcal{N})$ has only the zero slope at \propto^{4}; then the operator $\mathcal{F}_{q^{+}} \mathcal{N}$ has a basis of solution in $K[[z-\xi]]_{p}$ for all $\xi \in K^{*}$.
Proof. The hypothesis on the Newton Polygon of \mathcal{N} at ∞ implies that we can write \mathcal{N} in the following form

$$
\mathcal{N}=\sum_{i=0}^{\nu} \sum_{j=0}^{N} a_{i, j} x^{j} d_{q}^{i},
$$

with $a_{i, N}=0$ for all $i=0, \ldots, \nu-1$ and $a_{\nu, N} \neq 0$. This implies that the coefficient of d_{p}^{N} in

$$
\begin{aligned}
\mathcal{F}_{q^{+}}(\mathcal{N}) & =\sum_{i=0}^{\nu} \sum_{j=0}^{N} a_{i, j}\left(-p d_{p}\right)^{j} \circ z^{i} \\
& =\sum_{j=0}^{N-1} \sum_{i=0}^{\nu} c_{j, i} z^{i} d_{p}^{j}+a_{\nu, N}(-q)^{\nu-N} z^{\nu} d_{p}^{N}
\end{aligned}
$$

does not have any zero in the set $\left\{q^{n} \xi: n \in \mathbb{Z}_{>0}\right\}$. Using the fact that $d_{p} T_{n}^{p}(z, \xi)=[n]_{p} T_{n-1}^{p}(z, \xi)$ and that $z T_{n}^{p}(z, \xi)=T_{n+1}^{p}(z, \xi)+p^{n} \xi T_{n}^{p}(z, \xi)$, a basis of solutions of $\mathcal{F}_{q^{+}}(\mathcal{L})$ in $K[[z-\xi]]_{p}$ can be constructed working with the recursive relation induced by $\mathcal{F}_{q^{+}}(\mathcal{L}) y=0$ on the coefficients of a generic solution of the form $\sum_{n} \alpha_{n} T_{n}^{p}(z, \xi)$.

[^4]Corollary 11.2. For any $\mathcal{N} \in K\left[z, d_{p}\right]$ (resp. $\mathcal{N} \in K\left[x, d_{q}\right], \mathcal{N} \in K\left[z, d_{p}\right]$) having only the zero slope at ∞, the operator $\mathcal{F}_{q^{+}}^{-1}(\mathcal{N})\left(\right.$ resp. $S \circ \mathcal{F}_{q^{+}}(\mathcal{N}), S \circ \mathcal{F}_{q^{+}}^{-1}(\mathcal{N})$) has a basis of solution in $K[[x-\xi]]_{q}$ for any $\xi \in K^{*}$.
Proof. The statement follows from the remark that $\mathcal{F}_{q^{+}}^{-1}(\mathcal{N})=\lambda \circ \mathcal{F}_{p^{+}}(\mathcal{N})$ and that the symmetry $S: z \mapsto 1 / x$ does not changes the kind of singularity at the points of K^{*}.

An analogous property holds for $\mathcal{F}_{q^{\#}}^{-1}$:
Proposition 11.3. Let $\mathcal{L}=\sum_{i=0}^{\nu} a_{i}\left(\frac{1}{z}\right) \sigma_{p}^{i} \in K\left[\frac{1}{z}, \sigma_{p}\right]$ such that $\operatorname{deg}_{\frac{1}{z}} a_{i}\left(\frac{1}{z}\right) \leq i$. We suppose that

$$
N=\operatorname{ord}_{\frac{1}{z}} a_{\nu}\left(\frac{1}{z}\right) \leq \operatorname{ord}_{\frac{1}{z}} a_{i}\left(\frac{1}{z}\right)
$$

for all $i=0, \ldots, \nu-1]^{5}$ Then $\mathcal{F}_{q^{\#}}^{-1}(\mathcal{L})$ has a basis of solution in $K[[x-\xi]]_{q}$ for all $\xi \in K^{*}$.
Proof. We call $a_{\nu, N} \in K$ the coefficients of $\frac{1}{z}^{N}$ in $a_{\nu}\left(\frac{1}{z}\right)$. Then we have:

$$
\mathcal{F}_{q^{\#}}^{-1}(\mathcal{L})=\sum_{i=0}^{\nu-N-1} b_{i}(x) \sigma_{q}^{i}+a_{\nu, N} x^{N} \sigma_{q}^{\nu-N}
$$

One ends the proof as above.

12. Structure theorems

Inspired by And00a, we want to characterize q-difference operators killing a global q-Gevrey series of orders $\left(-s_{1},-s_{2}\right)$, with $\left(s_{1}, s_{2}\right) \in \mathcal{Z}:=\mathbb{Q}_{\geq 0} \times \mathbb{Z}_{\geq 0} \backslash\{(0,0)\}$.

The skew polynomial ring $K(x)\left[d_{q}\right]$ is euclidean with respect to $\operatorname{deg}_{d_{q}}$. It follows that, if we have a formal power series y solution of a q-difference operator, we can find a q-difference operator \mathcal{L} killing y and such that $\operatorname{deg}_{d_{q}} \mathcal{L}$ is minimal. All the other linear q-difference operators killing y, minimal with respect to $\operatorname{deg}_{d_{q}}$, are of the form $f(x) \mathcal{L}$, with $f(x) \in K(x)$. By abuse of language, we will call the minimal degree operator $\mathcal{L} \in K\left[x, d_{q}\right]$ (resp. $K\left[x, \sigma_{q}\right]$) with no common factors in the coefficients the minimal operator killing y.

Remark 12.1. Let $y(x) \in K[[x]]$ be a formal power series solution of the linear q-difference operator $\mathcal{L}_{q}=\sum_{i=0}^{\nu} a_{i}(x) \sigma_{q}^{i}$. We choose \mathcal{L}_{q} such that $\operatorname{deg}_{\sigma_{q}} \mathcal{L}_{q}$ is minimal. Then for all positive integers r the operator $\mathcal{L}_{q^{1 / r}}=\sum_{i=0}^{\nu} a_{i}(x) \sigma_{q^{1 / r}}^{i r}$ is the minimal $q^{1 / r}$-difference operator killing $y(x)$. Moreover if λ is a slope of $N R P_{\sigma_{q}}\left(\mathcal{L}_{q}\right)\left(\right.$ resp. $\left.N R P_{d_{q}}\left(\mathcal{L}_{q}\right)\right)$ then λ / r is a slope of $N R P_{\sigma_{q}}\left(\mathcal{L}_{q^{1 / r}}\right)\left(\right.$ resp. $\left.N R P_{d_{q}}\left(\mathcal{L}_{q^{1 / r}}\right)\right)$. In fact, let \mathcal{L} be a $q^{1 / r}$-difference operator killing $y(x)$, minimal with respect to $\operatorname{deg}_{\sigma_{q^{1 / r}}}$. Then $\mathcal{L}_{q^{1 / r}}$ is a factor of \mathcal{L} in $K(x)\left[\sigma_{q^{1 / r}}\right]$, hence $\operatorname{deg}_{\sigma_{q^{1 / r}}} \mathcal{L} \leq r \operatorname{deg}_{\sigma_{q}} \mathcal{L}_{q}$. On the other side we have:

$$
\operatorname{dim}_{K(x)} \sum_{i \geq 0} K(x) \sigma_{q^{1 / r}}^{i}(y) \geq \operatorname{dim}_{K(x)} \sum_{i \geq 0} K(x) \sigma_{q^{1 / r}}^{i r}(y)=\operatorname{dim}_{K(x)} \sum_{i \geq 0} K(x) \sigma_{q}^{i}(y),
$$

therefore $\operatorname{deg}_{\sigma_{q^{1 / r}}} \mathcal{L} \geq r \operatorname{deg}_{\sigma_{q}} \mathcal{L}_{q}$.
We recall the statement of Corollary 4.4 which is the starting point for this second part of the paper:
Proposition 12.2. Let $F \in K[[x]]$ be a global q-Gevrey series of orders $(0,0)$ and $\mathcal{L} \in K\left[x, d_{q}\right]$ the minimal q-difference operator such that $\mathcal{L} F=0$. Then \mathcal{L} is regular singular.

Using the formal q-Fourier transformations introduced in the previous section, we will deduce the structure theorems below from Proposition 12.2 .
Theorem 12.3. Let $F \in K[[x]] \backslash K[x]$ be a global q-Gevrey series of orders $\left(-s_{1},-s_{2}\right)$, with $\left(s_{1}, s_{2}\right) \in \mathcal{Z}$ and $\mathcal{L} \in K\left[x, d_{q}\right]$ be the minimal linear q-difference operator such that $\mathcal{L} F=0$. Then \mathcal{L} has the following properties:

- the set of finite slopes of the Newton Polygon $N R P_{d_{q}}(\mathcal{L})$ is $\left\{-1 /\left(s_{1}+s_{2}\right), 0\right\}$;
- for all $\xi \in K^{*}$, the q-difference operator \mathcal{L} has a basis of solutions in $K[[x-\xi]]_{q}$.

[^5]Proof. Let us write the formal power series F in the form:

$$
F=\sum_{n=0}^{\infty} \frac{a_{n}}{\left(q^{\frac{n(n-1)}{2}}\right)^{s_{1}}\left([n]_{q}^{!}\right)^{s_{2}}} x^{n}
$$

where $\sum_{n=0}^{\infty} a_{n} x^{n}$ is a G_{q}-function. Let $\widetilde{F}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+s_{2}}$; then the series \widetilde{F} has finite size, therefore there exists a regular singular q-difference operator $\mathcal{L} \in K\left[x, \sigma_{q}\right]$ such that $\mathcal{L} \widetilde{F}=0$. The polygon $N R P_{\sigma_{q}}(\mathcal{L})$ has only the zero slope (apart from the infinite slopes).

Let \mathcal{S} be the symmetry with respect to the origin:

$$
\begin{array}{rccc}
\mathcal{S}: & x & \longmapsto & 1 / z \\
\sigma_{q} & \longmapsto & \sigma_{p}
\end{array} .
$$

Remark that the operator $\mathcal{F}_{q^{+}}^{-1} \circ \mathcal{S}(\mathcal{L})$ kill the formal power series $\sum_{n=0}^{\infty} \frac{a_{n}}{[n]_{q}} x^{n+s_{2}-1}$. The polygon $N R P_{d_{p}}(\mathcal{S}(\mathcal{L}))$ is obtained by $N R P_{d_{q}}(\mathcal{L})$ applying a symmetry with respect to the line $v=0$. It follows from Proposition 10.4 that the set of finite slopes of $N R P_{d_{q}}\left(\mathcal{F}_{q^{+}}^{-1} \circ \mathcal{S}(\mathcal{L})\right)$ is $\{0,-1\}$. Iterating s_{2} times this reasoning, we obtain a q-difference operator $\widetilde{\mathcal{L}}=\mathcal{F}_{q^{+}}^{-1} \circ \mathcal{S} \circ \cdots \circ \mathcal{F}_{q^{+}}^{-1} \circ \mathcal{S}(\mathcal{L})$, such that the set of finite slopes of $N R P_{d_{q}}(\widetilde{\mathcal{L}})$ is $\left\{0,-1 / s_{2}\right\}$. We obtain:

$$
\widetilde{\mathcal{L}}\left(\sum_{n=0}^{\infty} \frac{a_{n}}{\left([n]_{q}^{!}\right)^{s_{2}}} x^{n}\right)=0
$$

Because of \$8.2, we can now suppose that s_{1} is actually a positive integer. We conclude the proof applying the same argument to $\overline{\mathcal{L}}=\left(\mathcal{F}_{q^{\#}}^{-1} \circ \circ \mathcal{S}\right) \circ \cdots \circ\left(\mathcal{F}_{q^{\#}}^{-1} \circ \mathcal{S}\right)\left(\sigma_{q}^{n} \circ \widetilde{\mathcal{L}} \circ x^{s_{1}}\right)$, for a suitable $n \in \mathbb{Z}_{\geq 0}$, and to the Newton-Ramis Polygon defined with respect to σ_{q}. We know that $\overline{\mathcal{L}} F=0$.

The operator \mathcal{L} is a factor of $\overline{\mathcal{L}}$ in $K(x)\left[\sigma_{q}\right]$. We know ($c f$. for instance [Sau04]) that the slopes of the Newton Polygon of \mathcal{L} at zero (resp. ∞) are slopes of the Newton Polygon of $\overline{\mathcal{L}}$ at zero (resp. ∞). To obtain the desired result on the slopes of $N R P_{d_{q}}(\mathcal{L})$ one has to notice that $\overline{\mathcal{L}}$ must have a positive slope at ∞ because of Ram92, Theorem 4.8]. As far as $\xi \in K^{*}$ is concerned, the operator $\overline{\mathcal{L}}$ has a basis of solutions at ξ in $K[[x-\xi]]_{q}$ (cf. Propositions 11.1 and 11.3), therefore the same is true for \mathcal{L}.

Proposition 10.3 implies that for a global q-Gevrey series of orders $\left(-s_{1}, 0\right)$ we have actually proved a more precise result:
Theorem 12.4. Under the hypothesis of the previous theorem, we assume that $s_{2}=0$. Then \mathcal{L} has the following properties:

- the set of finite slopes of $N P_{\sigma_{q}}(\mathcal{L})$ is $\left\{0,-1 / s_{1}\right\}$;
- for all $\xi \in K^{*}$, the q-difference operator \mathcal{L} has a basis of solutions in $K[[x-\xi]]_{q}$.

Changing q in q^{-1} we get the corollary:
Corollary 12.5. Let $F \in K[[x]] \backslash K[x]$ be a global q-Gevrey series of orders $\left(s_{1},-s_{2}\right)$, with $\left(s_{1}, s_{2}\right) \in$ $\mathbb{Q} \times \mathbb{Z}$, such that $s_{1} \geq s_{2} \geq 0$ and either $s_{1} \neq s_{2}$ or $s_{2} \neq 0$. Let $\mathcal{L} \in K\left[x, \sigma_{q}\right]$ be the minimal linear q-difference operator such that $\mathcal{L} F=0$. Then \mathcal{L} has the following properties:

- the set of finite slope of $N P_{d_{p}}(\mathcal{L})$ is $\left\{0,1 / s_{1}\right\}$
- for all $\xi \in K^{*}$, the q-difference operator \mathcal{L} has a basis of solutions in $K[[x-\xi]]_{p}$.

Proof. It follows by Proposition 8.4, taking into account that when one changes q in q^{-1}, the slopes of the Newton Polygon change sign.

Following And00b we can characterize the apparent singularities of such a q-difference equation:
Theorem 12.6. Let $F \in K[[x]] \backslash K[x]$ be a global q-Gevrey series of orders $\left(-s_{1},-s_{2}\right)$, with $\left(s_{1}, s_{2}\right) \in \mathcal{Z}$. We fix a point $\xi \in K^{*}$. For all $v \in \mathcal{P}$ such that $|q|_{v}>1$ we suppose that the v-adic function $F(x)$ has a zero at ξ. Let $\mathcal{L} \in K\left[x, d_{q}\right]$ be the minimal linear q-difference operator such that $\mathcal{L} F=0$. Then \mathcal{L} has a basis of solution in

$$
(x-\xi) K[[x-q \xi]]_{q}=\left\{\sum_{n=1}^{\infty} a_{n}(x-\xi)_{n}: a_{n} \in K\right\}
$$

The proof is based on the following lemma, which is an analogue of And00b Lemme 2.1.2] (cf. also And00b, Lemma 4.4.2]).

Lemma 12.7. Let F be a global q-Gevrey series of orders $\left(-s_{1},-s_{2}\right)$, with $s_{1}, s_{2} \in \mathbb{Q}_{\geq 0} \times \mathbb{Z}_{\geq 0}$. We fix a point $\xi \in K^{*}$. For all $v \in \mathcal{P}$ such that $|q|_{v}>1$ we suppose that the v-adic entire function $F(x)$ has a zero at ξ. Then $G=(x-\xi)^{-1} F$ is a global q-Gevrey series of orders $\left(-s_{1},-s_{2}\right)$.
Proof of Theorem 12.6. We fix some notation:

$$
\begin{gathered}
F=\sum_{n=0}^{\infty} \frac{a_{n}}{q^{s_{1} \frac{n(n-1)}{2}}[n]_{q}^{!} s_{2}} x^{n}, G=\sum_{n=0}^{\infty} \frac{b_{n}}{q^{s_{1} \frac{n(n-1)}{2}}[n]_{q}^{!} s_{2}} x^{n}, \\
\widetilde{h}(n, v, F)=\sup _{s \leq n}\left|a_{s}\right|_{v} \text { and } \widetilde{h}(n, v, G)=\sup _{s \leq n}\left|b_{s}\right|_{v} .
\end{gathered}
$$

Since $\frac{1}{x-\xi}=-\sum_{n \geq 0} \frac{x^{n}}{\xi^{n+1}}$, we obtain:

$$
b_{n}=-\sum_{k=0}^{n}\left(q^{\frac{n(n-1)}{2}-\frac{k(k-1)}{2}}\right)^{s_{1}}\left(\frac{[n]_{q}^{!}}{[k]_{q}^{!}}\right)^{s_{2}} \xi^{k-n-1} a_{k}
$$

and therefore:

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{|q|_{v} \leq 1} \widetilde{h}(n, v, G) \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{|q|_{v} \leq 1} \widetilde{h}(n, v, F)+\sum_{|q|_{v} \leq 1}|\xi|_{v} .
$$

To conclude it is enough to prove that G is a local q-Gevrey series of order $s_{1}+s_{2}$ for all $v \in \mathcal{P}$ such that $|q|_{v}>1$. This follows from [Ram92, Prop. 2.1], since F and G have the same growth at ∞, because F has a zero at ξ.

Proof. Let $G=(x-\xi)^{-1} F$ and \mathcal{L} be the minimal linear q-difference operator such that $\mathcal{L} F=0$; then $\mathcal{L} \circ(x-\xi)$ is the minimal linear q-difference operator such that $\mathcal{L} \circ(x-\xi)(G)=0$. By Lemma 12.7 and Theorem 12.3 $\mathcal{L} \circ(x-\xi)$ has a basis of solution in $K[[x-q \xi]]_{q}$, therefore the operator \mathcal{L} has a basis of solution in $(x-\xi) K[[x-q \xi]]_{q}$.

Once again, switching q into q^{-1} we obtain the corollary:
Corollary 12.8. Let $F \in K[[x]] \backslash K[x]$ be a global q-Gevrey series of orders $\left(s_{1},-s_{2}\right)$, with $s_{1}, s_{2} \in \mathbb{Q} \times \mathbb{Z}$, $s_{1} \geq s_{2} \geq 0$ and either $s_{1} \neq s_{2}$ or $s_{2} \neq 0$. We fix a point $\xi \in K^{*}$. For all $v \in \mathcal{P}$ such that $|q|_{v}<1$ we suppose that the v-adic function $F(x)$ has a zero at ξ. Let $\mathcal{L} \in K\left[x, d_{q}\right]$ be the minimal linear q-difference operator such that $\mathcal{L} F=0$. Then \mathcal{L} has a basis of solution in

$$
(x-\xi) K[[x-p \xi]]_{p} .
$$

Proof. It follows from Proposition 8.4 and Theorem 12.6
We conclude the section with an example:
Example 12.9. Let us consider the q-exponential series $E_{q}(x)=\sum_{n \geq 0} \frac{x^{n}}{[n]_{q}}$, solution of the equation $d_{q} y=y$. A classical formula ($c f$. GR90, 1.3.16]) says that for $|q|_{v}>1$ the series $E_{q}(x)$ can be written as an infinite product:

$$
E_{q}(x)=\left(-x\left(1-q^{-1}\right) ; q^{-1}\right)_{\infty}:=\prod_{k=0}^{\infty}\left(1-x \frac{1-q}{q^{k+1}}\right)
$$

hence $E_{q}\left(\frac{q}{1-q}\right)=0$ for all v such that $|q|_{v}>1$. Let us consider formal q-series:

$$
G(x)=\frac{E_{q}(x)}{x-\frac{q}{1-q}}=\frac{q-1}{q} E_{q}\left(\frac{x}{q}\right) .
$$

Obviously, $q d_{q} G(x)-G(x)=0$ and actually:

$$
\left(d_{q}-1\right) \circ\left(x-\frac{q}{1-q}\right) G(x)=\left(x-\frac{1}{1-q}\right)\left(q d_{q}-1\right) G(x)=0 .
$$

Since $\sum_{n \geq 0} \frac{q^{-n}}{[n]_{q}^{T}} T_{n}^{q}\left(x, \frac{q^{2}}{1-q}\right) \in K\left[\left[x-\frac{q^{2}}{1-q}\right]\right]_{q}$ is a formal solution of $q d_{q} y=y$, the series

$$
\left(x-\frac{q}{1-q}\right) \sum_{n \geq 0} \frac{q^{-n}}{[n]_{q}^{!}} T_{n}^{q}\left(x, \frac{q^{2}}{1-q}\right) \in\left(x-\frac{q}{1-q}\right) K\left[\left[x-\frac{q^{2}}{1-q}\right]\right]_{q}
$$

is a formal solution of $d_{q} y=y$.

13. An irrationality result for global q-Gevrey series of negative orders

In this section we are going to give a simple criteria to determine the q-orbits where a global q-Gevrey series does not satisfy the hypothesis of Theorem 12.6. We will deduce an irrationality result for values of a global q-Gevrey series $F(x) \in K[[x]] \backslash K[x]$ of negative orders.

Remark 13.1. The arithmetic Gevrey series theory in the differential case has applications to transcendence theory ($c f$. And00b). In the global q-Gevrey series framework this can not be true, since the set of global q-Gevrey series has only a structure of $\bar{k}(q)$-vector space. We mean that the product of two global q-Gevrey series of nonzero orders doesn't need to be a global q-Gevrey series, as the following example shows:

$$
e_{q}(x)^{2}=\left(\sum_{n=0}^{\infty} \frac{x^{n}}{[n]_{q}^{!}}\right)^{2}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k}_{q}\right) \frac{x^{n}}{[n]_{q}^{!}} .
$$

In fact, because of the estimate at the cyclotomic places $e_{q}(x)^{2}$ should be a global q-Gevrey series of order $(0,-1)$, while the local q-Gevrey order at places $v \in \mathcal{P}_{\infty}$ such that $|q|_{v}>1$ is 2 . For this reason a global q-Gevrey series theory can only have applications to the irrationality theory.

Let

$$
\mathcal{L}=a_{\nu}(x) \sigma_{q}^{\nu}+\cdots+a_{1}(x) \sigma_{q}+a_{0}(x) \in K\left[x, \sigma_{q}\right],
$$

and let $u_{0}, \ldots, u_{\nu-1}$ a basis of solution of \mathcal{L} is a convenient q-difference algebra extending $K(x)$. The Casorati matrix

$$
\mathcal{U}=\left(\begin{array}{ccc}
u_{0} & \cdots & u_{\nu-1} \\
\sigma_{q} u_{0} & \cdots & \sigma_{q} u_{\nu-1} \\
\vdots & \ddots & \vdots \\
\sigma_{q}^{\nu-1} u_{0} & \cdots & \sigma_{q}^{\nu-1} u_{\nu-1}
\end{array}\right)
$$

is a fundamental solution of the q-difference system

$$
\left.\sigma_{q} \mathcal{U}=\left(\begin{array}{c|cc}
0 & & \\
\vdots & & \mathbb{I}_{\nu-1} \\
0 & & \\
\hline-\frac{a_{0}(x)}{a_{\nu}(x)} & -\frac{a_{1}(x)}{a_{\nu}(x)} & \ldots
\end{array}\right)-\frac{a_{\nu-1}(x)}{a_{\nu}(x)}\right) ~ U .
$$

so that $\mathcal{C}=\operatorname{det} \mathcal{U}$ is solution of the equation:

$$
\sigma_{q} \mathcal{C}=(-1)^{\nu} \frac{a_{0}(x)}{a_{\nu}(x)} \mathcal{C}
$$

Notice that the " q-Wronskian lemma" (cf. for instance [DV02, §1.2]) implies that the determinant of the Casorati matrix of a basis of solutions of an operator \mathcal{L} is nonzero.

Proposition 13.2. Let $F \in K[[x]] \backslash K[x]$ be a global q-Gevrey series of orders $\left(-s_{1},-s_{2}\right)$, with $s_{1}, s_{2} \in \mathcal{Z}$. We fix a point $\xi \in K^{*}$. Let $\mathcal{L}=a_{\nu}(x) \sigma_{q}^{\nu}+\cdots+a_{1}(x) \sigma_{q}+a_{0}(x) \in K\left[x, \sigma_{q}\right]$ be the minimal q-difference operator such that $\mathcal{L} F=0$. If $F(x)$ has a zero at ξ for all v such that $|q|_{v}>1$, then there exists an integer $m \geq 0$ such that $q^{m} \xi$ is a zero of $a_{0}(x)$.
Proof. The determinant of the Casorati matrix of a basis of solutions of \mathcal{L} satisfies the equation

$$
y(q x)=(-1)^{\nu} \frac{a_{\nu}(x)}{a_{0}(x)} y(x) .
$$

On the other hand we know that \mathcal{L} has a basis of solution $u_{0}, \ldots, u_{\nu-1} \in(x-\xi) K[[x-q \xi]]$. This means that the u_{i} 's are formal series of the form $\sum_{n \geq 1} a_{n} T_{n}^{q}(x, \xi)$, for some $a_{n} \in K$. Since $(q x-\xi)=$ $q\left(x-q^{n-1} \xi\right)+\left(q^{n}-1\right) \xi$, one obtain that

$$
\left.\sigma_{q}\left(\sum_{n \geq 1} a_{n} T_{n}^{q}(x, \xi)\right)=q a_{1}+\sum_{n \geq 1}\left(q^{n} a_{n}+q^{n+1} a_{n+1} \xi\left(q^{n}-1\right)\right)\right) T_{n}^{q}(x, \xi)
$$

This implies that the determinant \mathcal{C} of the Casorati matrix of $u_{0}, \ldots, u_{\nu-1}$ is an element of $(x-\xi) K[[x-$ $q \xi]]_{q}$. Let $m \geq 1$ be the larger integer such that $\mathcal{C} \in T_{m}^{q}(x, \xi) K\left[\left[x-q^{m} \xi\right]\right]_{q}$. The formula above implies that $\sigma_{q} \mathcal{U} \in T_{m-1}^{q}(x, \xi) K\left[\left[x-q^{m-1} \xi\right]\right]_{q} \backslash T_{m}^{q}(x, \xi) K\left[\left[x-q^{m} \xi\right]\right]_{q}$, and therefore that $q^{m-1} \xi$ is a zero of $a_{0}(x)$.

In the same way we can prove the following result:
Corollary 13.3. Let $F \in K[[x]] \backslash K[x]$ be a global q-Gevrey series of orders $\left(s_{1},-s_{2}\right)$, with $s_{1}, s_{2} \in \mathbb{Q} \times \mathbb{Z}$, $s_{1} \geq s_{2} \geq 0$ and either $s_{1} \neq s_{2}$ or $s_{2} \neq 0$. We fix a point $\xi \in K^{*}$. Let $\mathcal{L}=a_{\nu}(x) \sigma_{q}^{\nu}+\cdots+a_{1}(x) \sigma_{q}+a_{0}(x) \in$ $K\left[x, \sigma_{q}\right]$ be the minimal linear q-difference operator such that $\mathcal{L} F=0$. If $F(x)$ has a zero at ξ for all $v \in \mathcal{P}$ such that $|q|_{v}<1$ then there exists an integer $m \leq-\nu$ such that $q^{m} \xi$ is a zero of $a_{\nu}(x)$.
Proof. It follows from Proposition 8.4 that $F(x)$ is a global q^{-1}-Gevrey series of negative orders $\left(-\left(s_{1}-\right.\right.$ $\left.\left.s_{2}\right),-s_{2}\right)$ and the minimal linear q^{-1}-difference operator killing $F(x)$ is $a_{\nu}\left(q^{-\nu} x\right)+\cdots+a_{1}\left(q^{-\nu} x\right) \sigma_{q^{-1}}^{\nu-1}+$ $a_{0}\left(q^{-\nu} x\right) \sigma_{q^{-1}}^{\nu}$.
Example 13.4. Let us consider the field $K=k(q)$ and the Tchakaloff series:

$$
T_{q}(x)=\sum_{n \geq 0} \frac{x^{n}}{q^{n(n-1) / 2}}
$$

Together with $E_{q}(x), T_{q}(x)$ is a q-analogue of the exponential function. The minimal linear q-difference equation killing $T_{q}(x)$ is

$$
\mathcal{L}=\left(\sigma_{q}-1\right) \circ\left(\sigma_{q}-q x\right)=\left(\sigma_{q}-q^{2} x\right) \circ\left(\sigma_{q}-1\right)=\sigma_{q}^{2}-\left(1+q^{2} x\right) \sigma_{q}+q^{2} x .
$$

Notice that $1, T_{q}(x)$ is a basis of solutions of \mathcal{L} at zero. We conclude that $T_{q}(\xi) \neq 0$ for all $\xi \in K^{*}$, as the value a q^{-1}-adic entire analytic function, i.e. the hypothesis of Theorem 12.6 are never satisfied.

In particular, let $K=k(\widetilde{q})$, where $\widetilde{q}^{r}=q$ for some positive integer r. For any $\xi \in k(\widetilde{q}), \xi \neq 0$, the \widetilde{q}^{-1}-adic value $T_{q}(\xi)$ of $T_{q}(x)$ at ξ can be formally written as a Laurent series in $k\left(\left(\widetilde{q}^{-1}\right)\right)$, which is the completion of $k(\widetilde{q})$ at the \widetilde{q}^{-1}-adic place. The theorem above says that $T_{q}(\xi)$ cannot be the expansion of a rational function in $k(\widetilde{q})$. In fact, if it was, there would exists $c \in k(\widetilde{q})$ such that $T_{q}(x)+c$ has a zero at ξ and is solution of \mathcal{L}. This would imply that \mathcal{L} has a basis of solutions having a zero at ξ, against the fact that the constants are solution of \mathcal{L}.

As in And00b, we can also deduce a Lindemann-Weierstrass type statement:
Corollary 13.5. Let $K=k(\widetilde{q})$, where \widetilde{q} is a root of q. We consider the q-exponential function $e_{q}(x)=$ $\sum_{n \geq 0} \frac{x^{n}}{[n]_{q}^{!}}$and a set of element $a_{1}, \ldots, a_{r} \in K$, which are multiplicatively independent modulo $q^{\mathbb{Z}}$ (i.e. $\left.\alpha_{1}^{\mathbb{Z}} \cdots \alpha_{r}^{\mathbb{Z}} \cap q^{\mathbb{Z}}=\{1\}\right)$. Then the Laurent series $e_{q}\left(a_{1} \xi\right), \ldots, e_{q}\left(a_{r} \xi\right) \in k\left(\left(\widetilde{q}^{-1}\right)\right)$ are linearly independent over $k(\widetilde{q})$ for any $\xi \in K^{*}$.

Proof. It is enough to notice that $e_{q}\left(a_{1} x\right), \ldots, e_{q}\left(a_{r} x\right)$ is a basis of solutions of the operator

$$
\left(d_{q}-a_{1}\right) \circ \cdots \circ\left(d_{q}-a_{r}\right) .
$$

If there exist $\lambda_{1}, \ldots, \lambda_{r} \in K$ such that $\lambda_{1} e_{q}\left(\alpha_{1} \xi\right)+\cdots+\lambda_{r} e_{q}\left(\alpha_{r} \xi\right)=0$, then $e_{q}\left(\alpha_{i} \xi\right)=0$ for any $i=1, \ldots, r$, because of Theorem 12.6. Since $e_{q}(x)$ satisfies the equation $y(q x)=(1+(q-1) x) e_{q}(x)$, we deduce that $\xi \in \frac{q^{\mathbb{Z}} \geq 1}{(1-q) \alpha_{i}}$, for any $i=1, \ldots, r$. The last assertion would imply that $\alpha_{i} \alpha_{j}^{-1} \in q^{\mathbb{Z}}$ for any pair of distinct i, j, against the assumption.

We can deduce by Theorem 12.6 an irrationality result for all global q-Gevrey series $F(x)$ such that zero is not a slope of the Newton Polygon at ∞ of the minimal q-difference operator that kills $F(x)$:

Theorem 13.6. Let $\overline{k(q)}$ be a fixed algebraic closure of $k(q)$ and $\widetilde{K} \subset \overline{k(q)}$ the maximal extension of $k(q)$ such that the q^{-1}-adic norm of $k(q)$ extends uniquely to \widetilde{K}.

Let $F(x) \in \widetilde{K}[[x]] \backslash \widetilde{K}[x]$ be a global q-Gevrey series of orders $\left(-s_{1},-s_{2}\right)$, with $\left(s_{1}, s_{2}\right) \in \mathcal{Z}$, and \mathcal{L} the minimal linear q-difference operator such that $\mathcal{L} F(x)=0$. We suppose that zero is not a slope of \mathcal{L} at ∞. Then for all $\xi \in K^{*}$ the value $F(\xi)$ of the q^{-1}-adic analytic entire function $F(x)$ is not an element of \widetilde{K} (but of its \widetilde{q}^{-1}-adic completion).

Before proving the theorem, we give an example, which illustrates the proof:
Example 13.7. Let us consider the q-analogue of a Bessel series

$$
B_{q}(x)=\sum_{n \geq 0} \frac{x^{n}}{[n]_{q}^{!^{2}}}
$$

The series $B_{q}(x)$ is solution of the linear q-difference operator $\left(x d_{q}\right)^{2}-x$ that can be written also in the form:

$$
\mathcal{L}=\sigma_{q}^{2}-2 \sigma_{q}+\left(1-(q-1)^{2} x\right)
$$

There is a unique factorization of a linear q-difference operator linked to the slopes of its Newton Polygon ($c f$. Sau04]): we deduce that \mathcal{L} is the minimal q-difference operator killing $B_{q}(x)$ from the fact that the only slope of the Newton-Polygon of \mathcal{L} at ∞ is $-1 / 2$. We conclude that $B_{q}(\xi)=0$ for all v such that $|q|_{v}>1$, with $\xi \in \mathbb{P}^{1}(K)$, implies $\xi=q^{m} /(q-1)^{2}$ for some integer $m \geq 2$.

Let $K=k(\widetilde{q})$, with $\widetilde{q}^{r}=q$ for some positive integer r. In this case the \widetilde{q}^{-1}-adic norm is the only one such that $|q|_{v}>1$. For any $c \in K$ we have:

$$
\left(q \sigma_{q}-1\right) \circ \mathcal{L}\left(B_{q}(x)+c\right)=0
$$

One notices that the slopes of the Newton Polygon of $\left(q \sigma_{q}-1\right) \circ \mathcal{L}$ at ∞ are $\{0,-1 / 2\}$, therefore we deduce from the uniqueness of the factorization that $\left(q \sigma_{q}-1\right) \circ \mathcal{L}$ is the minimal q-difference operator killing $B_{q}(x)+c$. Since constants are solutions of $\left(q \sigma_{q}-1\right) \circ \mathcal{L}$, Theorem 12.6 implies that no solution of $\left(q \sigma_{q}-1\right) \circ \mathcal{L}$ can have a zero at any point $\xi \in K^{*}$ as \widetilde{q}^{-1}-adic holomorphic functions. This means that the function $B_{q}(x)+c$ cannot have a zero as a \widetilde{q}^{-1}-adic analytic function at $\xi \in K^{*}$, which means that $B_{q}(x)$ takes values in $k\left(\left(\widetilde{q}^{-1}\right)\right) \backslash k(\widetilde{q})$ at each $\xi \in K^{*}$.
Proof of Theorem 13.6. Let $c \in \widetilde{K}, c \neq 0, G(x)=F(x)+c, \mathcal{L}=\sum_{i=1}^{\nu} a_{i}(x) d_{q}^{i} \in \widetilde{K}\left[x, d_{q}\right]$ (resp. $\mathcal{N}=\sum_{j=1}^{\mu} b_{j}(x) d_{q}^{j} \in \widetilde{K}\left[x, d_{q}\right]$) be the minimal q-difference operator killing $F(x)$ (resp. $G(x)$). Of course we may assume that $a_{i}(x), b_{j}(x) \in \widetilde{K}(x)$ and $a_{\nu}(x)=b_{\mu}(x)=1$, and that everything is defined over a finite extension $K \subset \widetilde{K}$ of $k(q)$.

Since:

$$
\left(d_{q}-\frac{d_{q}\left(a_{0}\right)(x)}{a_{0}(x)}\right) \circ \mathcal{L}(G(x))=0 \text { and }\left(d_{q}-\frac{d_{q}\left(b_{0}\right)(x)}{b_{0}(x)}\right) \circ \mathcal{N}(F(x))=0
$$

we must have $\nu-1 \leq \mu \leq \nu+1$. Let us suppose first $\nu=\mu$. Then

$$
\left(d_{q}-\frac{d_{q}\left(a_{0}\right)(x)}{a_{0}(x)}\right) \circ \mathcal{L}=\left(d_{q}-\frac{d_{q}\left(b_{0}\right)(x)}{b_{0}(x)}\right) \circ \mathcal{N}
$$

since they have the same set of solutions and they are both monic operators. By hypothesis, zero is not a slope of the Newton Polygon of \mathcal{L} at ∞, while $\left(d_{q}-\frac{d_{q}\left(a_{0}\right)(x)}{a_{0}(x)}\right)$ has only the zero slope at ∞ : we conclude by the uniqueness of the factorization that $\mathcal{L}=\mathcal{N}$. We remark that the equality $\mathcal{L}=\mathcal{N}$ implies that constants are solutions of \mathcal{L} and that \mathcal{L} has a zero slope at ∞, hence we obtain a contradiction. So either $\mu=\nu-1$ or $\mu=\nu+1$. If $\mu=\nu-1$, then

$$
\mathcal{L}=\left(d_{q}-\frac{d_{q}\left(b_{0}\right)(x)}{b_{0}(x)}\right) \circ \mathcal{N}
$$

since both \mathcal{L} and \mathcal{N} are monic. Once again, constants are solution of \mathcal{L} and this is a contradiction. Finally, we have necessarily $\mu=\nu+1$ and

$$
\mathcal{N}=\left(d_{q}-\frac{d_{q}\left(b_{0}\right)(x)}{b_{0}(x)}\right) \circ \mathcal{L}
$$

Let us suppose that there exists $\xi \in K^{*}$, such that $F(x)$ takes a value in K at ξ, as \widetilde{q}^{-1}-adic analytic function. Then all the solutions of \mathcal{N} would have a zero at ξ against the fact that the constants are solutions of \mathcal{N}, hence $F(\xi) \neq 0$ is not in K.

References

[And89] Yves André, G-functions and geometry, Friedr. Vieweg \& Sohn, Braunschweig, 1989.
[And00a] , Séries Gevrey de type arithmétique. I. Théorèmes de pureté et de dualité, Annals of Mathematics. Second Series 151 (2000), no. 2, 705-740.
[And00b] , Séries Gevrey de type arithmétique. II. Transcendance sans transcendance, Annals of Mathematics. Second Series 151 (2000), no. 2, 741-756.
[BB92] Jean-Paul Bézivin and Abdelbaki Boutabaa, Sur les équations fonctionelles p-adiques aux q-différences, Universitat de Barcelona. Collectanea Mathematica 43 (1992), no. 2, 125-140.
[Béz92] Jean-Paul Bézivin, Sur les équations fonctionnelles aux q-différences, Aequationes Mathematicae 43 (1992), no. 2-3, 159-176.
[Bom81] Enrico Bombieri, On G-functions, Recent progress in analytic number theory, Vol. 2 (Durham, 1979), Academic Press, London, 1981, pp. 1-67.
[CC85] D. V. Chudnovsky and G. V. Chudnovsky, Applications of Padé approximations to Diophantine inequalities in values of G-functions, Number theory (New York, 1983-84), Lecture Notes in Math., vol. 1135, Springer, Berlin, 1985, pp. 9-51.
[CC08] Alain Connes and Caterina Consani, On the notion of geometry over \mathbf{F}_{1}, arXiv.org:0809.2926, 2008.
[DGS94] Bernard Dwork, Giovanni Gerotto, and Francis J. Sullivan, An introduction to G-functions, Annals of Mathematics Studies, vol. 133, Princeton University Press, 1994.
[DV00] Lucia Di Vizio, Étude arithmétique des équations aux q-différences et des équations différentielles, Ph.D. thesis, Université Paris 6, 2000.
[DV02] , Arithmetic theory of q-difference equations. The q-analogue of Grothendieck-Katz's conjecture on
[DV04] - Introduction to p-adic q-difference equations (weak Frobenius structure and transfer theorems), Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter GmbH \& Co. KG, Berlin, 2004, arXiv:math.NT/0211217, pp. 615-675.
[DVH09] Lucia Di Vizio and Charlotte Hardouin, Algebraic and differential generic galois groups, preprint, 2009, arXiv:??
[DVRSZ03] L. Di Vizio, J.-P. Ramis, J. Sauloy, and C. Zhang, Équations aux q-différences, Gazette des Mathématiciens (2003), no. 96, 20-49.
[DVZ07] Lucia Di Vizio and Changgui Zhang, On q-summation and confluence, To appear in Annales de l'Insitut Fourier, 2007, arXiv:0709.1610.
[GL05] Stavros Garoufalidis and Thang T. Q. Lê, The colored Jones function is q-holonomic, Geometry and Topology 9 (2005), 1253-1293.
[GR90] George Gasper and Mizan Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge University Press, Cambridge, 1990, With a foreword by Richard Askey.
[Har07] Charlotte Hardouin, Iterative q-Difference Galois Theory, preprint, 2007.
[Kat70] Nicholas M. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Institut des Hautes Études Scientifiques. Publications Mathématiques (1970), no. 39, 175-232.
[Man08] Yu. I Manin, Cyclotomy and analytic geometry over \mathbf{F}_{1}, arXiv:0809.1564, 2008.
[MZ00] F. Marotte and C. Zhang, Multisommabilité des séries entières solutions formelles d'une équation aux q différences linéaire analytique, Annales de l'Institut Fourier 50 (2000), no. 6, 1859-1890.
[Pra83] C. Praagman, The formal classification of linear difference operators, Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae 45 (1983), no. 2, 249-261.
[Ram92] Jean-Pierre Ramis, About the growth of entire functions solutions of linear algebraic q-difference equations, Toulouse. Faculté des Sciences. Annales. Mathématiques. Série 61 (1992), no. 1, 53-94.
[Sau00] Jacques Sauloy, Systèmes aux q-différences singuliers réguliers: classification, matrice de connexion et monodromie, Annales de l'Institut Fourier 50 (2000), no. 4, 1021-1071.
[Sau04] , La filtration canonique par les pentes d'un module aux q-différences et le gradué associé, Annales de l'Institut Fourier 54 (2004), no. 1, 181-210.
[Sou04] Christophe Soulé, Les variétés sur le corps à un élément, Mosc. Math. J. 4 (2004), no. 1, 217-244, 312.
[vdPS97] Marius van der Put and Michael F. Singer, Galois theory of difference equations, Springer-Verlag, Berlin, 1997.
[Zha99] Changgui Zhang, Développements asymptotiques q-Gevrey et séries Gq-sommables, Annales de l'Institut Fourier 49 (1999), no. 1, 227-261.

[^0]: Date: November 12, 2009.
 Institut de Mathématiques de Jussieu, Topologie et géométrie algébriques, Case 7012, 2, place Jussieu, 75251 Paris Cedex 05, France. e-mail: divizio@math.jussieu.fr.
 Work partially supported by ANR, contract ANR-06-JCJC-0028.

[^1]: ${ }^{1}$ It may be interesting to remark, although we won't need it in the sequel, that the estimate of the size of a product of G-functions proved in And89 I, 1.4, Lemma 2] holds also in the case of G_{q}-functions.

[^2]: ${ }^{2}$ This notation is a little bit ambiguous and we should rather write $\sigma_{p, z}, d_{p, z}, d_{q, x}$, etc. etc. Anyway the contest will be always clear enough not to be obliged to specify the variable in the notation.

[^3]: ${ }^{3}$ To make the notation clear, we underline that we denote $N R P_{\sigma_{p}}\left(\mathcal{F}_{q^{\#}}(\mathcal{N})\right)$ the Newton-Ramis Polygon of $\mathcal{F}_{q^{\#}}(\mathcal{N})$ defined with respect to z and σ_{p} and $N R P_{d_{p}}\left(\mathcal{F}_{q^{+}}(\mathcal{N})\right)$ the Newton-Ramis Polygon of $\mathcal{F}_{q^{+}}(\mathcal{N})$ defined with respect to z and d_{p}.

[^4]: ${ }^{4}$ or equivalently, $N R P_{d_{q}}(\mathcal{N})$ has no negative slopes.

[^5]: ${ }^{5}$ or equivalently, that $N R P_{d_{q}}(S \circ \mathcal{L})$ does not have any positive slope.

