Université de Versailles-St Quentin, Laboratoire de Mathématiques, 45 avenue des États-Unis 78035 Versailles cedex, France
e-mail: divizio[at]math.cnrs.fr          Office: bâtiment Fermat, office 3305

with Charlotte Hardouin. C. R. Math. Acad. Sci. Paris 348 (2010), no. 17-18, 951--954


Combining the results in Hendriks (1996) [6], Di Vizio (2002) [1] and Di Vizio, Hardouin [2], we prove that the generic, algebraic or differential, Galois group of a \(q\)-difference modules over \(\mathbb C\{x\}\) can always be characterized in terms of \(v\)-curvatures, in the spirit of the work of Katz (1982) [8]. We use this result to prove that the Malgrange–Granier \(D\)-groupoid of a linear \(q\)-difference system coincide, in a sense that we specify below, with a sort of Kolchin closure of the dynamics of the linear \(q\)-difference system and that the group that fixes a transversal, coincide with the differential generic Galois group.