Université de Versailles-St Quentin, Laboratoire de Mathématiques, 45 avenue des États-Unis 78035 Versailles cedex, France
e-mail: divizio[at]math.cnrs.fr          Office: bâtiment Fermat, office 3305

with Charlotte Hardouin and Michael WibmerAdvances in Mathematics, 260 (2014), Pages 1--58. 


We develop a Galois theory for linear differential equations equipped with the action of an endomorphism. This theory is aimed at studying the difference algebraic relations among the solutions of a linear differential equation. The Galois groups here are linear difference algebraic groups, i.e., matrix groups defined by algebraic difference equations.

DOI: 10.1016/j.aim.2014.04.005

ArXiv: 1302.7198

HAL: hal-00997318v1